Carleson measures for the area Nevanlinna spaces and applications

被引:0
|
作者
Boo Rim Choe
Hyungwoon Koo
Wayne Smith
机构
[1] Korea University,Department of Mathematics
[2] University of Hawaii,Department of Mathematics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Let 1 ≤ p < ∞ and let μ be a finite positive Borel measure on the unit disk D. The area Nevanlinna-Lebesgue space Np(μ) consists of all measurable functions h on D such that log+ |h| ∈ Lp(μ), and the area Nevanlinna space Nαp is the subspace consisting of all holomorphic functions, in Np((1−|z|2)αdv(z)), where α > −1 and ν is area measure on D. We characterize Carleson measures for Nαp, defined to be those measures μ for which Nαp ⊂ Np(μ). As an application, we show that the spaces Nαp are closed under both differentiation and integration. This is in contrast to the classical Nevanlinna space, defined by integration on circles centered at the origin, which is closed under neither. Applications to composition operators and to integral operators are also given.
引用
下载
收藏
相关论文
共 50 条
  • [1] Carleson measures for the area Nevanlinna spaces and applications
    Choe, Boo Rim
    Koo, Hyungwoon
    Smith, Wayne
    JOURNAL D ANALYSE MATHEMATIQUE, 2008, 104 (1): : 207 - 233
  • [2] Carleson measures for Besov spaces on the ball with applications
    Kaptanoglu, H. Turgay
    JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 250 (02) : 483 - 520
  • [3] New criteria of Carleson measures for Hardy spaces and their applications
    Zhao, Ruhan
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2010, 55 (07) : 633 - 646
  • [4] DK SPACES AND CARLESON MEASURES
    李东行
    乌兰哈斯
    赵如汉
    Acta Mathematica Scientia, 2022, 42 (03) : 1103 - 1112
  • [5] DK Spaces and Carleson Measures
    Dongxing Li
    Hasi Wulan
    Ruhan Zhao
    Acta Mathematica Scientia, 2022, 42 : 1103 - 1112
  • [6] DK Spaces and Carleson Measures
    Li, Dongxing
    Wulan, Hasi
    Zhao, Ruhan
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (03) : 1103 - 1112
  • [7] Carleson measures for spaces of Dirichlet type
    Girela, Daniel
    Pelaez, Jose Angel
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2006, 55 (03) : 415 - 427
  • [8] Reverse Carleson measures in Hardy spaces
    Hartmann, Andreas
    Massaneda, Xavier
    Nicolau, Artur
    Ortega-Cerda, Joaquim
    COLLECTANEA MATHEMATICA, 2014, 65 (03) : 357 - 365
  • [9] Besov spaces and Carleson measures on the ball
    Kaptanoglu, H. Turgay
    COMPTES RENDUS MATHEMATIQUE, 2006, 343 (07) : 453 - 456
  • [10] CARLESON MEASURES ON SPACES OF HOMOGENEOUS TYPE
    GADBOIS, SC
    SLEDD, WT
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 341 (02) : 841 - 862