If 0 < p < ∞ and α > − 1, the space
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal{D}_\alpha ^p $$\end{document} consists of those functions f which are analytic in the unit disc
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb{D}$$\end{document} and have the property that f ′ belongs to the weighted Bergman space Aαp. In 1999, Z. Wu obtained a characterization of the Carleson measures for the spaces
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb{D}_\alpha ^p$$\end{document} for certain values of p and α. In particular, he proved that, for 0 < p ≤ 2, the Carleson measures for the space
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb{D}_{p - 1}^p$$\end{document} are precisely the classical Carleson measures. Wu also conjectured that this result remains true for 2 < p < ∞. In this paper we prove that this conjecture is false. Indeed, we prove that if 2 < p < ∞, then there exists g analytic in
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb{D}$$\end{document} such that the measure μg,p on
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb{D}$$\end{document} defined by dμg,p (z) = (1 − |z|2)p - 1| g ′ (z)|p dx dy is not a Carleson measure for
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal{D}_{p - 1}^p$$\end{document} but is a classical Carleson measure. We obtain also some sufficient conditions for multipliers of the spaces
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal{D}_{p - 1}^p .$$\end{document}
机构:
Hefei Normal Univ, Coll Math & Stat, Hefei 230061, Anhui, Peoples R China
Huzhou Univ, Dept Math, Huzhou 313000, Zhejiang, Peoples R ChinaHefei Normal Univ, Coll Math & Stat, Hefei 230061, Anhui, Peoples R China
Zhou, Lifang
Zhao, Dong
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Normal Univ, Sch Math Sci, Jinhua 321004, Zhejiang, Peoples R ChinaHefei Normal Univ, Coll Math & Stat, Hefei 230061, Anhui, Peoples R China
Zhao, Dong
Tang, Xiaomin
论文数: 0引用数: 0
h-index: 0
机构:
Huzhou Univ, Dept Math, Huzhou 313000, Zhejiang, Peoples R ChinaHefei Normal Univ, Coll Math & Stat, Hefei 230061, Anhui, Peoples R China
机构:
Univ Milano Bicocca, Dipartimento Stat & Metodi Quantitativi DiSMeQ, Bicocca Arcimboldi 8, Milan, ItalyUniv Milano Bicocca, Dipartimento Stat & Metodi Quantitativi DiSMeQ, Bicocca Arcimboldi 8, Milan, Italy