Optimality of logarithmic interpolation inequalities and extension criteria to the Navier–Stokes and Euler equations in Vishik spaces

被引:0
|
作者
Ryo Kanamaru
机构
[1] Waseda University,Department of Pure and Applied MathematicsSchool of Fundamental Science and Engineering
来源
关键词
Vishik space; Logarithmic interpolation inequality; Navier–Stokes equations;
D O I
暂无
中图分类号
学科分类号
摘要
We show the logarithmic interpolation inequality by means of the Vishik space V˙q,σ,θs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{V}}^{s}_{q,\sigma ,\theta }$$\end{document} which is larger than the homogeneous Besov space B˙q,σs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{B}}^{s}_{q,\sigma }$$\end{document}. We emphasize that V˙q,σ,θs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{V}}^{s}_{q,\sigma ,\theta }$$\end{document} may be the largest normed space that satisfies the logarithmic interpolation inequality. As an application of this inequality, we prove that the strong solution to the Navier–Stokes and Euler equations can be extended if the scaling invariant quantity of vorticity in the Vishik space is finite. Namely, the Beirão da Veiga- and Beale–Kato–Majda-type regularity criteria are improved in the terms of the Vishik space.
引用
收藏
页码:1381 / 1397
页数:16
相关论文
共 50 条
  • [21] Logarithmically improved regularity criteria for the Navier-Stokes equations in multiplier spaces
    Zhou, Yong
    Gala, Sadek
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 356 (02) : 498 - 501
  • [22] NEW REGULARITY CRITERIA FOR NAVIER-STOKES AND SQG EQUATIONS IN CRITICAL SPACES
    Xu, Yiran
    Ha, Ly Kim
    Li, Haina
    Wang, Zexi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2025, 45 (04) : 1079 - 1095
  • [23] Logarithmically improved regularity criteria for the Navier-Stokes equations in Lorentz spaces
    Wei, Zhiqiang
    Wang, Yu-Zhu
    Wang, Yin-Xia
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (19) : 9848 - 9852
  • [24] ON CONTINUATION CRITERIA FOR THE FULL COMPRESSIBLE NAVIER-STOKES EQUATIONS IN LORENTZ SPACES
    Wang, Yanqing
    Wei, Wei
    Wu, Gang
    Ye, Yulin
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (02) : 671 - 689
  • [25] On Continuation Criteria for the Full Compressible Navier-Stokes Equations in Lorentz Spaces
    Yanqing Wang
    Wei Wei
    Gang Wu
    Yulin Ye
    Acta Mathematica Scientia, 2022, 42 : 671 - 689
  • [26] On Some Model Equations of Euler and Navier-Stokes Equations
    Du, Dapeng
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2021, 42 (02) : 281 - 290
  • [27] PROJECTION OF NAVIER-STOKES EQUATIONS UPON EULER EQUATIONS
    ELLIS, RS
    PINSKY, MA
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1975, 54 (02): : 157 - 181
  • [28] ON NAVIER-STOKES AND KELVIN-VOIGT EQUATIONS IN 3 DIMENSIONS IN INTERPOLATION SPACES
    BOHM, M
    MATHEMATISCHE NACHRICHTEN, 1992, 155 : 151 - 165
  • [29] On Some Model Equations of Euler and Navier-Stokes Equations
    Dapeng DU
    ChineseAnnalsofMathematics,SeriesB, 2021, (02) : 281 - 290
  • [30] The convergence of the solutions of the Navier-Stokes equations to that of the Euler equations
    Temam, R
    Wang, X
    APPLIED MATHEMATICS LETTERS, 1997, 10 (05) : 29 - 33