The convergence of the solutions of the Navier-Stokes equations to that of the Euler equations

被引:21
|
作者
Temam, R
Wang, X
机构
[1] INDIANA UNIV,INST APPL MATH & SCI COMP,BLOOMINGTON,IN 47405
[2] NYU,COURANT INST,NEW YORK,NY 10012
[3] IOWA STATE UNIV SCI & TECHNOL,DEPT MATH,AMES,IA 50011
基金
美国国家科学基金会;
关键词
boundary layer; small viscosity; Navier-Stokes equation; Euler equation;
D O I
10.1016/S0893-9659(97)00079-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we establish partial results concerning the convergence of the solutions of the Navier-Stokes equations to that of the Euler equations. Convergence is proved in space dimension two under a physically reasonable assumption, namely that the gradient of the pressure remains bounded at the boundary as the Reynolds number converges to infinity.
引用
收藏
页码:29 / 33
页数:5
相关论文
共 50 条