Convergence of the relaxed compressible Navier-Stokes equations to the incompressible Navier-Stokes equations

被引:2
|
作者
Ju, Qiangchang [1 ]
Wang, Zhao [1 ,2 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing, Peoples R China
[2] China Acad Engn Phys, Grad Sch, Beijing, Peoples R China
关键词
Singular limits; Navier-Stokes equations; Revised Maxwell's law; Ill-prepared initial data; Local smooth solution; MACH NUMBER LIMIT; SYSTEMS;
D O I
10.1016/j.aml.2023.108625
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the combined low Mach number and the relaxation limits of the isentropic compressible Navier-Stokes equations with revised Maxwell's law satisfying Galilean invariance. It is shown that, for the ill-prepared initial data, the solutions of the relaxed compressible Navier-Stokes equations converge to that of the incompressible Navier-Stokes equations as the Mach number and relaxation parameters tend to zero. (c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条