Optimality of logarithmic interpolation inequalities and extension criteria to the Navier–Stokes and Euler equations in Vishik spaces

被引:0
|
作者
Ryo Kanamaru
机构
[1] Waseda University,Department of Pure and Applied MathematicsSchool of Fundamental Science and Engineering
来源
关键词
Vishik space; Logarithmic interpolation inequality; Navier–Stokes equations;
D O I
暂无
中图分类号
学科分类号
摘要
We show the logarithmic interpolation inequality by means of the Vishik space V˙q,σ,θs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{V}}^{s}_{q,\sigma ,\theta }$$\end{document} which is larger than the homogeneous Besov space B˙q,σs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{B}}^{s}_{q,\sigma }$$\end{document}. We emphasize that V˙q,σ,θs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{V}}^{s}_{q,\sigma ,\theta }$$\end{document} may be the largest normed space that satisfies the logarithmic interpolation inequality. As an application of this inequality, we prove that the strong solution to the Navier–Stokes and Euler equations can be extended if the scaling invariant quantity of vorticity in the Vishik space is finite. Namely, the Beirão da Veiga- and Beale–Kato–Majda-type regularity criteria are improved in the terms of the Vishik space.
引用
收藏
页码:1381 / 1397
页数:16
相关论文
共 50 条
  • [31] On Some Model Equations of Euler and Navier-Stokes Equations
    Dapeng Du
    Chinese Annals of Mathematics, Series B, 2021, 42 : 281 - 290
  • [32] A POSTERIORI ESTIMATES FOR EULER AND NAVIER-STOKES EQUATIONS
    Morosi, Carlo
    Pernici, Mario
    Pizzocchero, Livid
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2014, 8 : 847 - 855
  • [33] Features of Numerical Simulation of Euler and Navier–Stokes Equations
    Petrova L.I.
    Computational Mathematics and Modeling, 2017, 28 (1) : 32 - 36
  • [34] The Energy Measure for the Euler and Navier-Stokes Equations
    Leslie, Trevor M.
    Shvydkoy, Roman
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 230 (02) : 459 - 492
  • [35] CONVERGENCE OF EULER-STOKES SPLITTING OF THE NAVIER-STOKES EQUATIONS
    BEALE, JT
    GREENGARD, C
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (08) : 1083 - 1115
  • [36] Adaptive methods for Euler and Navier-Stokes equations
    Kliková, A
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2000, 80 : S529 - S530
  • [37] COMMUTATOR ESTIMATES AND THE EULER AND NAVIER-STOKES EQUATIONS
    KATO, T
    PONCE, G
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) : 891 - 907
  • [38] Multigrid method for the Euler and Navier-Stokes equations
    Demuren, AO
    Ibraheem, SO
    AIAA JOURNAL, 1998, 36 (01) : 31 - 37
  • [39] Euler and Navier-Stokes equations on the hyperbolic plane
    Khesin, Boris
    Misiolek, Gerard
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (45) : 18324 - 18326
  • [40] ε-Regularity criteria for the 3D Navier-Stokes equations in Lorentz spaces
    Wang, Yanqing
    Wei, Wei
    Yu, Huan
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (02) : 1627 - 1650