A higher order Sobolev-type inner product for orthogonal polynomials in several variables

被引:0
|
作者
Herbert Dueñas
Luis E. Garza
Miguel Piñar
机构
[1] Universidad Nacional de Colombia,Departamento de Matemáticas
[2] Universidad de Colima,Facultad de Ciencias
[3] Universidad de Granada,Departamento de Matemática Aplicada, Facultad de Ciencias
来源
Numerical Algorithms | 2015年 / 68卷
关键词
Multivariate orthogonal polynomials; Asymptotics; Sobolev inner products; 33C47; 42C05;
D O I
暂无
中图分类号
学科分类号
摘要
We consider polynomials in several variables orthogonal with respect to a Sobolev-type inner product, obtained from adding a higher order gradient evaluated in a fixed point to a standard inner product. An expression for these polynomials in terms of the orthogonal family associated with the standard inner product is obtained. A particular case using polynomials in the unit ball is analyzed, and some asymptotic results are derived.
引用
收藏
页码:35 / 46
页数:11
相关论文
共 50 条
  • [1] A higher order Sobolev-type inner product for orthogonal polynomials in several variables
    Duenas, Herbert
    Garza, Luis E.
    Pinar, Miguel
    [J]. NUMERICAL ALGORITHMS, 2015, 68 (01) : 35 - 46
  • [2] The Fourier Series of the Meixner Polynomials Orthogonal with Respect to the Sobolev-type Inner Product
    Gadzhimirzaev, R. M.
    [J]. IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2016, 16 (04): : 388 - 395
  • [3] SYMMETRICAL ORTHOGONAL POLYNOMIALS FOR SOBOLEV-TYPE INNER PRODUCTS
    ALFARO, M
    MARCELLAN, F
    MEIJER, HG
    REZOLA, ML
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (02) : 360 - 381
  • [4] Sobolev Orthogonal Polynomials of Several Variables on Product Domains
    Duenas Ruiz, Herbert
    Salazar-Morales, Omar
    Pinar, Miguel
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (05)
  • [5] Sobolev Orthogonal Polynomials of Several Variables on Product Domains
    Herbert Dueñas Ruiz
    Omar Salazar-Morales
    Miguel Piñar
    [J]. Mediterranean Journal of Mathematics, 2021, 18
  • [6] Sobolev-type orthogonal polynomials on the unit circle
    Marcellán, F
    Moral, L
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2002, 128 (2-3) : 329 - 363
  • [7] SOBOLEV-TYPE ORTHOGONAL POLYNOMIALS - THE NONDIAGONAL CASE
    ALFARO, M
    MARCELLAN, F
    REZOLA, ML
    RONVEAUX, A
    [J]. JOURNAL OF APPROXIMATION THEORY, 1995, 83 (02) : 266 - 287
  • [8] On the second-order holonomic equation for Sobolev-type orthogonal polynomials
    Rebocho, Maria das Neves
    [J]. APPLICABLE ANALYSIS, 2022, 101 (01) : 314 - 336
  • [9] Sobolev-type orthogonal polynomials on the unit ball
    Delgado, Antonia M.
    Perez, Teresa E.
    Pinar, Miguel A.
    [J]. JOURNAL OF APPROXIMATION THEORY, 2013, 170 : 94 - 106
  • [10] Polynomials Orthogonal with Respect to Sobolev Type Inner Product Generated by Charlier Polynomials
    Sharapudinov, I. I.
    Guseinov, I. G.
    [J]. IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2018, 18 (02): : 196 - 205