Sobolev Orthogonal Polynomials of Several Variables on Product Domains

被引:0
|
作者
Herbert Dueñas Ruiz
Omar Salazar-Morales
Miguel Piñar
机构
[1] Universidad Nacional de Colombia,Departamento de Matemáticas
[2] Ciudad Universitaria,Departamento de Matemática Aplicada
[3] Universidad de Granada,undefined
来源
关键词
Orthogonal polynomials; several variables; classical orthogonal polynomials; product domains; Sobolev polynomials; Primary 33C50; Secondary 42C05;
D O I
暂无
中图分类号
学科分类号
摘要
Sobolev orthogonal polynomials of d variables on the product domain Ω:=[a1,b1]×⋯×[ad,bd]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega :=[a_1,b_1]\times \cdots \times [a_d,b_d]$$\end{document} with respect to the inner product f,gS=c∫Ω∇κf(x)·∇κg(x)W(x)dx+∑i=0κ-1λi∇if(p)·∇ig(p),κ∈N,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\langle f,g\right\rangle _S= c\int _\Omega \nabla ^\kappa f({\mathbf {x}})\cdot \nabla ^\kappa g({\mathbf {x}})W({\mathbf {x}}){\mathrm{d}}{\mathbf {x}}+ \sum _{i=0}^{\kappa -1}\lambda _i \nabla ^ i f({\mathbf {p}})\cdot \nabla ^i g({\mathbf {p}}), \kappa \in {\mathbb {N}}, \end{aligned}$$\end{document}are constructed, where ∇if\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla ^i f$$\end{document}, i=0,1,2,…,κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=0,1,2,\ldots ,\kappa $$\end{document}, is a column vector which contains all the partial derivatives of order i of f, x:=(x1,x2,…,xd)∈Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {x}}:=(x_1,x_2,\ldots ,x_d)\in {\mathbb {R}}^d$$\end{document}, dx:=dx1dx2⋯dxd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{d}}{\mathbf {x}}:={\mathrm{d}}x_1{\mathrm{d}}x_2\cdots {\mathrm{d}}x_d$$\end{document}, W(x):=w1(x1)w2(x2)⋯wd(xd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W({\mathbf {x}}):=w_1(x_1)w_2(x_2)\cdots w_d(x_d)$$\end{document} is a product weight function on Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}, wi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_i$$\end{document} is a weight function on [ai,bi]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[a_i,b_i]$$\end{document}, i=1,2,…,d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=1,2,\ldots ,d$$\end{document}, λi>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _i >0$$\end{document} for i=0,1,…,κ-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=0,1,\ldots ,\kappa -1$$\end{document}, p=(p1,p2,…,pd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {p}}=(p_1,p_2,\ldots ,p_d)$$\end{document} is a point in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^d$$\end{document}, typically on the boundary of Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}, and c is the normalization constant of W. The main result consists of a generalization to several variables and higher order derivatives of some results which are presented in the literature of Sobolev orthogonal polynomials in two variables; namely, properties involving the integral part in ·,·S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\langle \cdot ,\cdot \right\rangle _S$$\end{document}, a connection formula, and a recursive relation for constructing iteratively the polynomials. To illustrate the main ideas, we present a new example for the Hermite–Hermite–Laguerre product weight function.
引用
收藏
相关论文
共 50 条
  • [1] Sobolev Orthogonal Polynomials of Several Variables on Product Domains
    Duenas Ruiz, Herbert
    Salazar-Morales, Omar
    Pinar, Miguel
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (05)
  • [2] Sobolev orthogonal polynomials on product domains
    Fernandez, Lidia
    Marcellan, Francisco
    Perez, Teresa E.
    Pinar, Miguel A.
    Xu, Yuan
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 284 : 202 - 215
  • [3] Sobolev orthogonal polynomials of high order in two variables defined on product domains
    Duenas Ruiz, Herbert
    Pinzon-Cortes, Natalia
    Salazar-Morales, Omar
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2017, 28 (12) : 988 - 1008
  • [4] A higher order Sobolev-type inner product for orthogonal polynomials in several variables
    Herbert Dueñas
    Luis E. Garza
    Miguel Piñar
    [J]. Numerical Algorithms, 2015, 68 : 35 - 46
  • [5] A higher order Sobolev-type inner product for orthogonal polynomials in several variables
    Duenas, Herbert
    Garza, Luis E.
    Pinar, Miguel
    [J]. NUMERICAL ALGORITHMS, 2015, 68 (01) : 35 - 46
  • [6] ORTHOGONAL POLYNOMIALS IN SEVERAL VARIABLES
    LYSKOVA, AS
    [J]. DOKLADY AKADEMII NAUK SSSR, 1991, 316 (06): : 1301 - 1306
  • [7] ON THE ORTHOGONAL POLYNOMIALS IN SEVERAL VARIABLES
    GEKHTMAN, MI
    KALYUZHNY, AA
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 1994, 19 (04) : 404 - 418
  • [8] Monomial orthogonal polynomials of several variables
    Xu, Y
    [J]. JOURNAL OF APPROXIMATION THEORY, 2005, 133 (01) : 1 - 37
  • [9] On discrete orthogonal polynomials of several variables
    Yuan, X
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2004, 33 (03) : 615 - 632
  • [10] Orthogonal polynomials associated with a Δ-Sobolev inner product
    De Morales, MA
    Pérez, TE
    Piñar, MA
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2002, 8 (02) : 125 - 151