Polynomials Orthogonal with Respect to Sobolev Type Inner Product Generated by Charlier Polynomials

被引:2
|
作者
Sharapudinov, I. I. [1 ]
Guseinov, I. G. [2 ,3 ]
机构
[1] RAS, Dagestan Sci Ctr, 45 M Gadzhieva Str, Makhachkala 367025, Russia
[2] Dagestan State Univ, 43-A M Gadzhieva Str, Makhachkala 367025, Russia
[3] Dagestan Sci Ctr RAS, 45 M Gadzhieva Str, Makhachkala 367025, Russia
来源
IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA | 2018年 / 18卷 / 02期
关键词
Sobolev orthogonal polynomials; Charlier polynomials; Sobolev-type inner product;
D O I
10.18500/1816-9791-2018-18-2-196-205
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The problem of constructing of the Sobolev orthogonal polynomials s(r,n)(alpha)(x) generated by Charlier polynomials s(n)(alpha)(x) is considered. It is shown that the system of polynomials s(r,n)(alpha)(x) generated by Charlier polynomials is complete in the space W-l rho(r), consisted of the discrete functions, given on the grid Omega = {0, 1, ...}. W-l rho(r) is a Hilbert space with the inner product < f, g >. An explicit formula in the form of s(r,k+r)(alpha)(x) = Sigma(k)(l=0) b(l)(r)x([l+r]),where x([m]) = x(x - 1) (x - m + 1), is found. The connection between the polynomials s(r,n)(alpha)(x) and the classical Charlier polynomials s(n)(alpha)(x) in the form of s(r,k+r)(alpha)(x) = U-k(r )[s(k+r)(alpha)(x) - Sigma(r-1)(nu=0)V(k,nu)(r )x([)(nu])], where for the numbers U-k(r), V-k,nu(r) we found the explicit expressions, is established.
引用
收藏
页码:196 / 205
页数:10
相关论文
共 50 条