A higher order Sobolev-type inner product for orthogonal polynomials in several variables

被引:0
|
作者
Herbert Dueñas
Luis E. Garza
Miguel Piñar
机构
[1] Universidad Nacional de Colombia,Departamento de Matemáticas
[2] Universidad de Colima,Facultad de Ciencias
[3] Universidad de Granada,Departamento de Matemática Aplicada, Facultad de Ciencias
来源
Numerical Algorithms | 2015年 / 68卷
关键词
Multivariate orthogonal polynomials; Asymptotics; Sobolev inner products; 33C47; 42C05;
D O I
暂无
中图分类号
学科分类号
摘要
We consider polynomials in several variables orthogonal with respect to a Sobolev-type inner product, obtained from adding a higher order gradient evaluated in a fixed point to a standard inner product. An expression for these polynomials in terms of the orthogonal family associated with the standard inner product is obtained. A particular case using polynomials in the unit ball is analyzed, and some asymptotic results are derived.
引用
收藏
页码:35 / 46
页数:11
相关论文
共 50 条
  • [41] ON THE ORTHOGONAL POLYNOMIALS IN SEVERAL VARIABLES
    GEKHTMAN, MI
    KALYUZHNY, AA
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 1994, 19 (04) : 404 - 418
  • [42] Pastro polynomials and Sobolev-type orthogonal polynomials on the unit circle based on a q-difference operator
    Suni, M. Hancco
    Marcellan, F.
    Ranga, A. Sri
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2023, 29 (03) : 315 - 343
  • [43] Recurrence relations and outer relative asymptotics of orthogonal polynomials with respect to a discrete Sobolev type inner product
    Marcellan, Francisco
    Francisca Perez-Valero, M.
    Quintana, Yamilet
    Urieles, Alejandro
    [J]. BULLETIN OF MATHEMATICAL SCIENCES, 2014, 4 (01) : 83 - 97
  • [44] A Cohen Type Inequality for Fourier Expansions of Orthogonal Polynomials with a Nondiscrete Jacobi-Sobolev Inner Product
    BujarXh Fejzullahu
    Francisco Marcellán
    [J]. Journal of Inequalities and Applications, 2010
  • [45] A Cohen Type Inequality for Fourier Expansions of Orthogonal Polynomials with a Nondiscrete Jacobi-Sobolev Inner Product
    Fejzullahu, Bujar Xh
    Marcellan, Francisco
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2010,
  • [46] Coherent pairs and Sobolev-type orthogonal polynomials on the real line: An extension to the matrix case
    Fuentes, Edinson
    Garza, Luis E.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 518 (01)
  • [47] MONOTONICITY AND ASYMPTOTICS OF ZEROS OF LAGUERRE-SOBOLEV-TYPE ORTHOGONAL POLYNOMIALS OF HIGHER ORDER DERIVATIVES
    Marcellan, Francisco
    Rafaeli, Fernando R.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (11) : 3929 - 3936
  • [48] Sobolev orthogonal polynomials on product domains
    Fernandez, Lidia
    Marcellan, Francisco
    Perez, Teresa E.
    Pinar, Miguel A.
    Xu, Yuan
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 284 : 202 - 215
  • [49] On Polynomials Orthogonal with Respect to an Inner Product Involving Higher-Order Differences: The Meixner Case
    Costas-Santos, Roberto S.
    Soria-Lorente, Anier
    Vilaire, Jean-Marie
    [J]. MATHEMATICS, 2022, 10 (11)
  • [50] Relative asymptotics and Fourier series of orthogonal polynomials with a discrete Sobolev inner product
    Rocha, IA
    Marcellán, F
    Salto, L
    [J]. JOURNAL OF APPROXIMATION THEORY, 2003, 121 (02) : 336 - 356