Coherent pairs and Sobolev-type orthogonal polynomials on the real line: An extension to the matrix case

被引:1
|
作者
Fuentes, Edinson [1 ]
Garza, Luis E. [2 ]
机构
[1] Univ Pedag & Tecnol Colombia, Escuela Matemat & Estadist, Ave Cent Norte 39-115, Tunja, Boyaca, Colombia
[2] Univ Colima, Fac Ciencias, Bernal Diaz Castillo 340, Colima, Mexico
关键词
Matrix orthogonal polynomials; Matrix coherent pairs; Matrix Sobolev polynomials; LAGUERRE; ASYMPTOTICS; RESPECT;
D O I
10.1016/j.jmaa.2022.126674
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this contribution, we extend the concept of coherent pair for two quasi-definite matrix linear functionals u0 and u1. Necessary and sufficient conditions for these functionals to constitute a coherent pair are determined, when one of them satisfies a matrix Pearson-type equation. Moreover, we deduce algebraic properties of the matrix orthogonal polynomials associated with the Sobolev-type inner product(sic)p, q(sic)(s) = (sic)p,q(sic)(u0) + (sic)p'M-1, q'M-2(sic)(u1) ,where M-1 and M-2 are m x m non-singular matrices and p, q are matrix polynomials.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:21
相关论文
共 50 条