Coherent pairs and Sobolev-type orthogonal polynomials on the real line: An extension to the matrix case

被引:1
|
作者
Fuentes, Edinson [1 ]
Garza, Luis E. [2 ]
机构
[1] Univ Pedag & Tecnol Colombia, Escuela Matemat & Estadist, Ave Cent Norte 39-115, Tunja, Boyaca, Colombia
[2] Univ Colima, Fac Ciencias, Bernal Diaz Castillo 340, Colima, Mexico
关键词
Matrix orthogonal polynomials; Matrix coherent pairs; Matrix Sobolev polynomials; LAGUERRE; ASYMPTOTICS; RESPECT;
D O I
10.1016/j.jmaa.2022.126674
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this contribution, we extend the concept of coherent pair for two quasi-definite matrix linear functionals u0 and u1. Necessary and sufficient conditions for these functionals to constitute a coherent pair are determined, when one of them satisfies a matrix Pearson-type equation. Moreover, we deduce algebraic properties of the matrix orthogonal polynomials associated with the Sobolev-type inner product(sic)p, q(sic)(s) = (sic)p,q(sic)(u0) + (sic)p'M-1, q'M-2(sic)(u1) ,where M-1 and M-2 are m x m non-singular matrices and p, q are matrix polynomials.(c) 2022 Elsevier Inc. All rights reserved.
引用
下载
收藏
页数:21
相关论文
共 50 条
  • [41] Asymptotics of Sobolev orthogonal polynomials for Hermite (1,1)-coherent pairs
    Duenas Ruiz, Herbert
    Marcellan Espanol, Francisco
    Molano Molano, Alejandro
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 467 (01) : 601 - 621
  • [42] Sobolev Orthogonal Polynomials on the Unit Circle and Coherent Pairs of Measures of the Second Kind
    Marcellan, F.
    Ranga, A. Sri
    RESULTS IN MATHEMATICS, 2017, 71 (3-4) : 1127 - 1149
  • [43] (M, N)-coherent pairs of order (m, k) and Sobolev orthogonal polynomials
    de Jesus, M. N.
    Marcellan, F.
    Petronilho, J.
    Pinzon-Cortes, N. C.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 256 : 16 - 35
  • [44] ON A CLASS OF MATRIX ORTHOGONAL POLYNOMIALS ON THE REAL LINE
    MARCELLAN, F
    SANSIGRE, G
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1993, 181 : 97 - 109
  • [45] Pastro polynomials and Sobolev-type orthogonal polynomials on the unit circle based on a q-difference operator
    Suni, M. Hancco
    Marcellan, F.
    Ranga, A. Sri
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2023, 29 (03) : 315 - 343
  • [46] On some Sobolev spaces with matrix weights and classical type Sobolev orthogonal polynomials
    Zagorodnyuk, S. M.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2021, 27 (02) : 261 - 283
  • [47] Regular Sobolev type orthogonal polynomials: The Bessel case
    Marcellan, F
    Perez, TE
    Pinar, MA
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1995, 25 (04) : 1431 - 1457
  • [48] On differential equations for Sobolev-type Laguerre polynomials
    Koekoek, J
    Koekoek, R
    Bavinck, H
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (01) : 347 - 393
  • [49] Coherent pairs of bivariate orthogonal polynomials
    Marcellan, Francisco
    Marriaga, Misael E.
    Perez, Teresa E.
    Pinar, Miguel A.
    JOURNAL OF APPROXIMATION THEORY, 2019, 245 : 40 - 63
  • [50] Jost Asymptotics for Matrix Orthogonal Polynomials on the Real Line
    Rostyslav Kozhan
    Constructive Approximation, 2012, 36 : 267 - 309