Coherent pairs and Sobolev-type orthogonal polynomials on the real line: An extension to the matrix case

被引:1
|
作者
Fuentes, Edinson [1 ]
Garza, Luis E. [2 ]
机构
[1] Univ Pedag & Tecnol Colombia, Escuela Matemat & Estadist, Ave Cent Norte 39-115, Tunja, Boyaca, Colombia
[2] Univ Colima, Fac Ciencias, Bernal Diaz Castillo 340, Colima, Mexico
关键词
Matrix orthogonal polynomials; Matrix coherent pairs; Matrix Sobolev polynomials; LAGUERRE; ASYMPTOTICS; RESPECT;
D O I
10.1016/j.jmaa.2022.126674
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this contribution, we extend the concept of coherent pair for two quasi-definite matrix linear functionals u0 and u1. Necessary and sufficient conditions for these functionals to constitute a coherent pair are determined, when one of them satisfies a matrix Pearson-type equation. Moreover, we deduce algebraic properties of the matrix orthogonal polynomials associated with the Sobolev-type inner product(sic)p, q(sic)(s) = (sic)p,q(sic)(u0) + (sic)p'M-1, q'M-2(sic)(u1) ,where M-1 and M-2 are m x m non-singular matrices and p, q are matrix polynomials.(c) 2022 Elsevier Inc. All rights reserved.
引用
下载
收藏
页数:21
相关论文
共 50 条
  • [21] GENERALIZED COHERENT PAIRS ON THE UNIT CIRCLE AND SOBOLEV ORTHOGONAL POLYNOMIALS
    Marcellan, Francisco
    Pinzon-Cortes, Natalia C.
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2014, 96 (110): : 193 - 210
  • [22] Zeros of Sobolev orthogonal polynomials following from coherent pairs
    Meijer, HG
    de Bruin, MG
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 139 (02) : 253 - 274
  • [23] An Analysis of the Recurrence Coefficients for Symmetric Sobolev-Type Orthogonal Polynomials
    Garza, Lino G.
    Garza, Luis E.
    Huertas, Edmundo J.
    SYMMETRY-BASEL, 2021, 13 (04):
  • [24] Asymptotic behavior of Sobolev-type orthogonal polynomials on the unit circle
    Moreno, AF
    Marcellán, F
    Pan, K
    JOURNAL OF APPROXIMATION THEORY, 1999, 100 (02) : 345 - 363
  • [25] Sobolev orthogonal polynomials and (M, N)-coherent pairs of measures
    de Jesus, M. N.
    Petronilho, J.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 237 (01) : 83 - 101
  • [26] Coherent pairs of moment functionals of the second kind and associated orthogonal polynomials and Sobolev orthogonal polynomials
    Suni, M. Hancco
    Marcato, G. A.
    Marcellan, F.
    Ranga, A. Sri
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 525 (01)
  • [27] New analytic properties of nonstandard Sobolev-type Charlier orthogonal polynomials
    Edmundo J. Huertas
    Anier Soria-Lorente
    Numerical Algorithms, 2019, 82 : 41 - 68
  • [28] ORTHOGONAL POLYNOMIALS AND COHERENT PAIRS - THE CLASSICAL CASE
    MARCELLAN, F
    PETRONILHO, J
    INDAGATIONES MATHEMATICAE-NEW SERIES, 1995, 6 (03): : 287 - 307
  • [29] New analytic properties of nonstandard Sobolev-type Charlier orthogonal polynomials
    Huertas, Edmundo J.
    Soria-Lorente, Anier
    NUMERICAL ALGORITHMS, 2019, 82 (01) : 41 - 68
  • [30] On the second-order holonomic equation for Sobolev-type orthogonal polynomials
    Rebocho, Maria das Neves
    APPLICABLE ANALYSIS, 2022, 101 (01) : 314 - 336