A Lower Bound Theorem for Centrally Symmetric Simplicial Polytopes

被引:0
|
作者
Steven Klee
Eran Nevo
Isabella Novik
Hailun Zheng
机构
[1] Seattle University,Department of Mathematics
[2] The Hebrew University of Jerusalem,Einstein Institute of Mathematics
[3] University of Washington,Department of Mathematics
[4] University of Michigan,Department of Mathematics
来源
关键词
Face numbers; Centrally symmetric polytopes; Stacked spheres; Infinitesimal rigidity; Stresses; Missing faces; 05E45; 52B05; 52B15; 52C25;
D O I
暂无
中图分类号
学科分类号
摘要
Stanley proved that for any centrally symmetric simplicial d-polytope P with d≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 3$$\end{document}, g2(P)≥d2-d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_2(P) \ge {d \atopwithdelims ()2}-d$$\end{document}. We provide a characterization of centrally symmetric simplicial d-polytopes with d≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 4$$\end{document} that satisfy this inequality as equality. This gives a natural generalization of the classical Lower Bound Theorem for simplicial polytopes to the setting of centrally symmetric simplicial polytopes.
引用
收藏
页码:541 / 561
页数:20
相关论文
共 50 条
  • [22] A comparison theorem for f-vectors of simplicial polytopes
    Bjoerner, Anders
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2007, 3 (01) : 347 - 356
  • [23] Classification of pseudo-symmetric simplicial reflexive polytopes
    Nill, Benjamin
    ALGEBRAIC AND GEOMETRIC COMBINATORICS, 2006, 423 : 269 - 282
  • [24] On Kalai's Conjectures Concerning Centrally Symmetric Polytopes
    Sanyal, Raman
    Werner, Axel
    Ziegler, Guenter M.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2009, 41 (02) : 183 - 198
  • [25] On toric h-vectors of centrally symmetric polytopes
    A'Campo-Neuen, Annette
    ARCHIV DER MATHEMATIK, 2006, 87 (03) : 217 - 226
  • [26] Infinite Families of Hypertopes from Centrally Symmetric Polytopes
    Piedade, Claudio Alexandre
    ELECTRONIC JOURNAL OF COMBINATORICS, 2023, 30 (02):
  • [27] Smooth Centrally Symmetric Polytopes in Dimension 3 are IDP
    Beck, Matthias
    Haase, Christian
    Higashitani, Akihiro
    Hofscheier, Johannes
    Jochemko, Katharina
    Katthan, Lukas
    Michalek, Mateusz
    ANNALS OF COMBINATORICS, 2019, 23 (02) : 255 - 262
  • [28] Smooth Centrally Symmetric Polytopes in Dimension 3 are IDP
    Matthias Beck
    Christian Haase
    Akihiro Higashitani
    Johannes Hofscheier
    Katharina Jochemko
    Lukas Katthän
    Mateusz Michałek
    Annals of Combinatorics, 2019, 23 : 255 - 262
  • [29] On toric h-vectors of centrally symmetric polytopes
    Annette A’Campo–Neuen
    Archiv der Mathematik, 2006, 87 : 217 - 226
  • [30] On Kalai’s Conjectures Concerning Centrally Symmetric Polytopes
    Raman Sanyal
    Axel Werner
    Günter M. Ziegler
    Discrete & Computational Geometry, 2009, 41 : 183 - 198