A Lower Bound Theorem for Centrally Symmetric Simplicial Polytopes

被引:0
|
作者
Steven Klee
Eran Nevo
Isabella Novik
Hailun Zheng
机构
[1] Seattle University,Department of Mathematics
[2] The Hebrew University of Jerusalem,Einstein Institute of Mathematics
[3] University of Washington,Department of Mathematics
[4] University of Michigan,Department of Mathematics
来源
关键词
Face numbers; Centrally symmetric polytopes; Stacked spheres; Infinitesimal rigidity; Stresses; Missing faces; 05E45; 52B05; 52B15; 52C25;
D O I
暂无
中图分类号
学科分类号
摘要
Stanley proved that for any centrally symmetric simplicial d-polytope P with d≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 3$$\end{document}, g2(P)≥d2-d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_2(P) \ge {d \atopwithdelims ()2}-d$$\end{document}. We provide a characterization of centrally symmetric simplicial d-polytopes with d≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 4$$\end{document} that satisfy this inequality as equality. This gives a natural generalization of the classical Lower Bound Theorem for simplicial polytopes to the setting of centrally symmetric simplicial polytopes.
引用
收藏
页码:541 / 561
页数:20
相关论文
共 50 条