A comparison theorem for f-vectors of simplicial polytopes

被引:0
|
作者
Bjoerner, Anders [1 ]
机构
[1] Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f(i)(P) denote the number of i-dimensional faces of a convex polytope P. Furthermore, let S(n, d) and C(n, d) denote, respectively, the stacked and the cyclic d-dimensional polytopes on n vertices. Our main result is that for every simplicial d-polytope P, if f(r) (S (n(1), d)) <= f(r) (P) <= f(r) (C (n(2), d)) for some integers n(1), n(2) and r, then f(s) (S (n(1), d)) <= f(s) (P) <= f(s) (C (n(2), d)) for all s such that r < s. For r = 0 these inequalities are the well-known lower and upper bound theorems for simplicial polytopes. The result is implied by a certain "comparison theorem" for f-vectors, formulated in Section 4. Among its other consequences is a similar lower bound theorem for centrally-symmetric simplicial polytopes.
引用
收藏
页码:347 / 356
页数:10
相关论文
共 50 条
  • [1] About f-Vectors of Inscribed Simplicial Polytopes
    Bernd Gonska
    Discrete & Computational Geometry, 2016, 55 : 497 - 521
  • [2] About f-Vectors of Inscribed Simplicial Polytopes
    Gonska, Bernd
    DISCRETE & COMPUTATIONAL GEOMETRY, 2016, 55 (03) : 497 - 521
  • [3] SUFFICIENCY OF MCMULLEN CONDITIONS FOR F-VECTORS OF SIMPLICIAL POLYTOPES
    BILLERA, LJ
    LEE, CW
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 2 (01) : 181 - 185
  • [4] A PROOF OF THE SUFFICIENCY OF MCMULLEN CONDITIONS FOR F-VECTORS OF SIMPLICIAL CONVEX POLYTOPES
    BILLERA, LJ
    LEE, CW
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1981, 31 (03) : 237 - 255
  • [5] Cutting polytopes and flag f-vectors
    Ehrenborg, R
    Johnston, D
    Rajagopalan, R
    Readdy, M
    DISCRETE & COMPUTATIONAL GEOMETRY, 2000, 23 (02) : 261 - 271
  • [6] f-vectors of simplicial posets that are balls
    Kolins, Samuel R.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2011, 34 (04) : 587 - 605
  • [7] The monotonicity of f-vectors of random polytopes
    Devillers, Olivier
    Glisse, Marc
    Goaoc, Xavier
    Moroz, Guillaume
    Reitzner, Matthias
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2013, 18 : 1 - 8
  • [8] Cutting Polytopes and Flag f-Vectors
    R. Ehrenborg
    D. Johnston
    R. Rajagopalan
    M. Readdy
    Discrete & Computational Geometry, 2000, 23 : 261 - 271
  • [9] f-vectors of simplicial posets that are balls
    Samuel R. Kolins
    Journal of Algebraic Combinatorics, 2011, 34
  • [10] ON THE CONE OF f-VECTORS OF CUBICAL POLYTOPES
    Adin, Ron M.
    Kalmanovich, Daniel
    Nevo, Eran
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (05) : 1851 - 1866