Gradient and Eigenvalue Estimates on the Canonical Bundle of Kähler Manifolds

被引:0
|
作者
Zhiqin Lu
Qi S. Zhang
Meng Zhu
机构
[1] University of California,Department of Mathematics
[2] University of California,Department of Mathematics
[3] East China Normal University,School of Mathematical Sciences and Shanghai Key Laboratory of PMMP
来源
关键词
Eigenvalue; Gradient estimates; Kahler manifold;
D O I
暂无
中图分类号
学科分类号
摘要
We prove certain gradient and eigenvalue estimates, as well as the heat kernel estimates, for the Hodge Laplacian on (m, 0) forms, i.e., sections of the canonical bundle of Kähler manifolds, where m is the complex dimension of the manifold. Instead of the usual dependence on curvature tensor, our condition depends only on the Ricci curvature bound. The proof is based on a new Bochner type formula for the gradient of (m, 0) forms, which involves only the Ricci curvature and the gradient of the scalar curvature.
引用
收藏
页码:10304 / 10335
页数:31
相关论文
共 50 条
  • [1] Gradient and Eigenvalue Estimates on the Canonical Bundle of Kahler Manifolds
    Lu, Zhiqin
    Zhang, Qi S.
    Zhu, Meng
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (10) : 10304 - 10335
  • [2] Eigenvalue Estimates on Quaternion-Kähler Manifolds
    Xiaolong Li
    Kui Wang
    The Journal of Geometric Analysis, 2023, 33
  • [3] Eigenvalue estimates for the Dirac operator on quaternionic Kähler manifolds
    W. Kramer
    U. Semmelmann
    G. Weingart
    Mathematische Zeitschrift, 1999, 230 : 727 - 751
  • [4] Eigenvalue estimates for the Dirac operator on Kähler–Einstein manifolds of even complex dimension
    K.-D. Kirchberg
    Annals of Global Analysis and Geometry, 2010, 38 : 273 - 284
  • [5] Compact Kähler Surfaces with Trivial Canonical Bundle
    Nicholas Buchdahl
    Annals of Global Analysis and Geometry, 2003, 23 : 189 - 204
  • [6] The First Eigenvalue of the Dirac Operator on Quaternionic Kähler Manifolds
    W. Kramer
    U. Semmelmann
    G. Weingart
    Communications in Mathematical Physics, 1998, 199 : 327 - 349
  • [7] Gradient estimates and the first Neumann eigenvalue on manifolds with boundary
    Wang, FY
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2005, 115 (09) : 1475 - 1486
  • [8] Canonical Kähler metrics on classes of Lorentzian 4-manifolds
    Amir Babak Aazami
    Gideon Maschler
    Annals of Global Analysis and Geometry, 2020, 57 : 175 - 204
  • [9] Kodaira dimension of almost Kähler manifolds and curvature of the canonical connection
    Andrea Cattaneo
    Antonella Nannicini
    Adriano Tomassini
    Annali di Matematica Pura ed Applicata (1923 -), 2020, 199 : 1815 - 1842
  • [10] On Manifolds with Trivial Logarithmic Tangent Bundle: The Non-Kähler Case
    Jörg Winkelmann
    Transformation Groups, 2008, 13 : 195 - 209