Preconditioned Richardson iteration for augmented linear systems

被引:0
|
作者
X. Y. Xiao
X. Wang
H. W. Yin
机构
[1] Nanchang University,Department of Mathematics, School of Sciences
[2] Nanchang University,Numerical Simulation and High
来源
Numerical Algorithms | 2019年 / 82卷
关键词
Augmented linear system; Positive definite; SOR-like iteration; Spectral radius; Convergence analysis; 65F10; 65F50;
D O I
暂无
中图分类号
学科分类号
摘要
For solving a class of augmented linear systems, we propose a new efficient iteration method, which is called preconditioned Richardson iteration (PR). Under suitable restrictions on the iteration parameters, we prove that the iterative sequences converge to the unique solution of the augmented linear system. Moreover, the optimal iteration parameters and the corresponding optimal convergence factor are discussed in detail. Numerical results show that the PR iteration method has an advantage over several other iteration methods by computing with the preconditioned GMRES methods from the point of view of iteration steps and CPU times.
引用
收藏
页码:843 / 867
页数:24
相关论文
共 50 条
  • [21] Preconditioned symmetric block triangular splitting iteration method for a class of complex symmetric linear systems
    Zhang, Jianhua
    Wang, Zewen
    Zhao, Jing
    APPLIED MATHEMATICS LETTERS, 2018, 86 : 95 - 102
  • [22] A comparison of the Extrapolated Successive Overrelaxation and the Preconditioned Simultaneous Displacement methods for augmented linear systems
    M. A. Louka
    N. M. Missirlis
    Numerische Mathematik, 2015, 131 : 517 - 540
  • [23] A comparison of the Extrapolated Successive Overrelaxation and the Preconditioned Simultaneous Displacement methods for augmented linear systems
    Louka, M. A.
    Missirlis, N. M.
    NUMERISCHE MATHEMATIK, 2015, 131 (03) : 517 - 540
  • [24] KACZMARZ-TYPE INNER-ITERATION PRECONDITIONED FLEXIBLE GMRES METHODS FOR CONSISTENT LINEAR SYSTEMS
    Du Y.-S.
    Hayami K.
    Zheng N.
    Morikuni K.
    Yin J.-F.
    Du, Yi-Shu (duyishu@tongji.edu.cn), 1600, National Institute of Informatics (2020):
  • [25] On Preconditioned MHSS Real-Valued Iteration Methods for a Class of Complex Symmetric Indefinite Linear Systems
    Ren, Zhi-Ru
    Cao, Yang
    Zhang, Li-Li
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2016, 6 (02) : 192 - 210
  • [26] Alternating Anderson-Richardson method: An efficient alternative to preconditioned Krylov methods for large, sparse linear systems
    Suryanarayana, Phanish
    Pratapa, Phanisri P.
    Pask, John E.
    COMPUTER PHYSICS COMMUNICATIONS, 2019, 234 : 278 - 285
  • [27] Efficient Acceleration Framework for Complex-Valued Linear Systems: Alternating Anderson Accelerating Preconditioned Richardson Approach
    Li, Zhizhi
    Zhang, Huai
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2025, 32 (01)
  • [28] Preconditioned dynamic iteration for coupled differential-algebraic systems
    Arnold, M
    Günther, M
    BIT, 2001, 41 (01): : 1 - 25
  • [29] Preconditioned Dynamic Iteration for Coupled Differential-Algebraic Systems
    Martin Arnold
    Michael Günther
    BIT Numerical Mathematics, 2001, 41 : 1 - 25
  • [30] RICHARDSON'S ITERATION WITH DYNAMIC PARAMETERS AND THE SIP INCOMPLETE FACTORIZATION FOR THE SOLUTION OF LINEAR SYSTEMS OF EQUATIONS.
    Saylor, Paul E.
    Society of Petroleum Engineers journal, 1981, 21 (06): : 699 - 708