Preconditioned Richardson iteration for augmented linear systems

被引:0
|
作者
X. Y. Xiao
X. Wang
H. W. Yin
机构
[1] Nanchang University,Department of Mathematics, School of Sciences
[2] Nanchang University,Numerical Simulation and High
来源
Numerical Algorithms | 2019年 / 82卷
关键词
Augmented linear system; Positive definite; SOR-like iteration; Spectral radius; Convergence analysis; 65F10; 65F50;
D O I
暂无
中图分类号
学科分类号
摘要
For solving a class of augmented linear systems, we propose a new efficient iteration method, which is called preconditioned Richardson iteration (PR). Under suitable restrictions on the iteration parameters, we prove that the iterative sequences converge to the unique solution of the augmented linear system. Moreover, the optimal iteration parameters and the corresponding optimal convergence factor are discussed in detail. Numerical results show that the PR iteration method has an advantage over several other iteration methods by computing with the preconditioned GMRES methods from the point of view of iteration steps and CPU times.
引用
收藏
页码:843 / 867
页数:24
相关论文
共 50 条
  • [31] A non-alternating preconditioned HSS iteration method for non-Hermitian positive definite linear systems
    Wu, Yu-Jiang
    Li, Xu
    Yuan, Jin-Yun
    COMPUTATIONAL & APPLIED MATHEMATICS, 2017, 36 (01): : 367 - 381
  • [32] A non-alternating preconditioned HSS iteration method for non-Hermitian positive definite linear systems
    Yu-Jiang Wu
    Xu Li
    Jin-Yun Yuan
    Computational and Applied Mathematics, 2017, 36 : 367 - 381
  • [33] KACZMARZ-TYPE INNER-ITERATION PRECONDITIONED FLEXIBLE GMRES METHODS FOR CONSISTENT LINEAR SYSTEMS\ast
    Du, Yi-Shu
    Hayami, Ken
    Zheng, Ning
    Morikuni, Keiichi
    Yin, Jun-Feng
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (05): : S345 - S366
  • [34] The AOR method for preconditioned linear systems
    Evans, DJ
    Martins, MM
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1995, 56 (1-2) : 69 - 76
  • [35] A modified method for preconditioned linear systems
    Yang, Peng
    Huang, T. Z.
    Advances in Matrix Theory and Applications, 2006, : 474 - 477
  • [36] Solving large mixed linear models using preconditioned conjugate gradient iteration
    Strandén, I
    Lidauer, M
    JOURNAL OF DAIRY SCIENCE, 1999, 82 (12) : 2779 - 2787
  • [37] A PRECONDITIONED SSOR ITERATION METHOD FOR SOLVING COMPLEX SYMMETRIC SYSTEM OF LINEAR EQUATIONS
    Siahkolaei, Tahereh Salimi
    Salkuyeh, Davod Khojasteh
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2019, 9 (04): : 483 - 492
  • [38] Preconditioned MHSS iteration methods for a class of block two-by-two linear systems with applications to distributed control problems
    Bai, Zhong-Zhi
    Benzi, Michele
    Chen, Fang
    Wang, Zeng-Qi
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (01) : 343 - 369
  • [39] Orthogonal block Kaczmarz inner-iteration preconditioned flexible GMRES method for large-scale linear systems
    Zhang, Xin-Fang
    Xiao, Meng-Long
    He, Zhuo-Heng
    APPLIED MATHEMATICS LETTERS, 2025, 166
  • [40] The AOR Iterative Method for Preconditioned Linear Systems
    王转德
    高中喜
    黄廷祝
    Journal of Electronic Science and Technology of China, 2004, (02) : 90 - 93