KACZMARZ-TYPE INNER-ITERATION PRECONDITIONED FLEXIBLE GMRES METHODS FOR CONSISTENT LINEAR SYSTEMS

被引:0
|
作者
Du Y.-S. [1 ,2 ]
Hayami K. [3 ]
Zheng N. [4 ]
Morikuni K. [5 ]
Yin J.-F. [1 ]
机构
[1] School of Mathematical Sciences, Tongji University, N.O. 1239, Siping Road, Shanghai
[2] LIP, École Normale Supérieure de Lyon, INRIA, 46 Allée d'Italie, Lyon
[3] National Institute of Informatics, The Graduate University for Advanced Studies (SOKENDAI), 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo
[4] Research Center for Statistical Machine Learning, The Institute of Statistical Mathematics, 10-3 Midori-cho, Tachikawa, Tokyo
[5] Faculty of Engineering, Information and Systems, University of Tsukuba, 1-1-1 Tennodai, Ibaraki, Tsukuba
来源
Du, Yi-Shu (duyishu@tongji.edu.cn) | 1600年 / National Institute of Informatics卷 / 2020期
基金
日本学术振兴会; 中国国家自然科学基金;
关键词
flexible GMRES; GMRES; inner-outer iteration; iterative method; Kaczmarz method; least squares problem; linear system; overdetermined system; preconditioner; randomized algorithm; underdetermined system;
D O I
10.48550/arXiv.2006.10818
中图分类号
学科分类号
摘要
We propose using greedy and randomized Kaczmarz inner-iterations as preconditioners for the right preconditioned flexible GMRES method to solve consistent linear systems, with a parameter tuning strategy for adjusting the number of inner iterations and the relaxation parameter. We also present theoretical justifications of the right-preconditioned flexible GMRES for solving consistent linear systems. Numerical experiments on overdetermined and underdetermined linear systems show that the proposed method is superior to the GMRES method preconditioned by NE-SOR inner iterations in terms of total CPU time. © 2020 National Institute of Informatics. All rights reserved.
引用
收藏
相关论文
共 28 条
  • [1] KACZMARZ-TYPE INNER-ITERATION PRECONDITIONED FLEXIBLE GMRES METHODS FOR CONSISTENT LINEAR SYSTEMS\ast
    Du, Yi-Shu
    Hayami, Ken
    Zheng, Ning
    Morikuni, Keiichi
    Yin, Jun-Feng
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (05): : S345 - S366
  • [2] Orthogonal block Kaczmarz inner-iteration preconditioned flexible GMRES method for large-scale linear systems
    Zhang, Xin-Fang
    Xiao, Meng-Long
    He, Zhuo-Heng
    APPLIED MATHEMATICS LETTERS, 2025, 166
  • [3] CONVERGENCE OF INNER-ITERATION GMRES METHODS FOR RANK-DEFICIENT LEAST SQUARES PROBLEMS
    Morikuni, Keiichi
    Hayami, Ken
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2015, 36 (01) : 225 - 250
  • [4] On preconditioned iteration methods for complex linear systems
    Zhong-Zhi Bai
    Journal of Engineering Mathematics, 2015, 93 : 41 - 60
  • [5] On preconditioned iteration methods for complex linear systems
    Bai, Zhong-Zhi
    JOURNAL OF ENGINEERING MATHEMATICS, 2015, 93 (01) : 41 - 60
  • [6] Block sampling Kaczmarz–Motzkin methods for consistent linear systems
    Yanjun Zhang
    Hanyu Li
    Calcolo, 2021, 58
  • [7] On preconditioned MHSS iteration methods for complex symmetric linear systems
    Zhong-Zhi Bai
    Michele Benzi
    Fang Chen
    Numerical Algorithms, 2011, 56 : 297 - 317
  • [8] On preconditioned MHSS iteration methods for complex symmetric linear systems
    Bai, Zhong-Zhi
    Benzi, Michele
    Chen, Fang
    NUMERICAL ALGORITHMS, 2011, 56 (02) : 297 - 317
  • [9] Block sampling Kaczmarz-Motzkin methods for consistent linear systems
    Zhang, Yanjun
    Li, Hanyu
    CALCOLO, 2021, 58 (03)
  • [10] On fast greedy block Kaczmarz methods for solving large consistent linear systems
    A.-Qin Xiao
    Jun-Feng Yin
    Ning Zheng
    Computational and Applied Mathematics, 2023, 42