KACZMARZ-TYPE INNER-ITERATION PRECONDITIONED FLEXIBLE GMRES METHODS FOR CONSISTENT LINEAR SYSTEMS

被引:0
|
作者
Du Y.-S. [1 ,2 ]
Hayami K. [3 ]
Zheng N. [4 ]
Morikuni K. [5 ]
Yin J.-F. [1 ]
机构
[1] School of Mathematical Sciences, Tongji University, N.O. 1239, Siping Road, Shanghai
[2] LIP, École Normale Supérieure de Lyon, INRIA, 46 Allée d'Italie, Lyon
[3] National Institute of Informatics, The Graduate University for Advanced Studies (SOKENDAI), 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo
[4] Research Center for Statistical Machine Learning, The Institute of Statistical Mathematics, 10-3 Midori-cho, Tachikawa, Tokyo
[5] Faculty of Engineering, Information and Systems, University of Tsukuba, 1-1-1 Tennodai, Ibaraki, Tsukuba
来源
Du, Yi-Shu (duyishu@tongji.edu.cn) | 1600年 / National Institute of Informatics卷 / 2020期
基金
日本学术振兴会; 中国国家自然科学基金;
关键词
flexible GMRES; GMRES; inner-outer iteration; iterative method; Kaczmarz method; least squares problem; linear system; overdetermined system; preconditioner; randomized algorithm; underdetermined system;
D O I
10.48550/arXiv.2006.10818
中图分类号
学科分类号
摘要
We propose using greedy and randomized Kaczmarz inner-iterations as preconditioners for the right preconditioned flexible GMRES method to solve consistent linear systems, with a parameter tuning strategy for adjusting the number of inner iterations and the relaxation parameter. We also present theoretical justifications of the right-preconditioned flexible GMRES for solving consistent linear systems. Numerical experiments on overdetermined and underdetermined linear systems show that the proposed method is superior to the GMRES method preconditioned by NE-SOR inner iterations in terms of total CPU time. © 2020 National Institute of Informatics. All rights reserved.
引用
收藏
相关论文
共 28 条
  • [21] Preconditioned MHSS iteration methods for a class of block two-by-two linear systems with applications to distributed control problems
    Bai, Zhong-Zhi
    Benzi, Michele
    Chen, Fang
    Wang, Zeng-Qi
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (01) : 343 - 369
  • [22] The upper Jacobi and upper Gauss-Seidel type iterative methods for preconditioned linear systems
    Wang, Zhuan-De
    Huang, Ting-Zhu
    APPLIED MATHEMATICS LETTERS, 2006, 19 (10) : 1029 - 1036
  • [23] A MODIFIED BLOCK FLEXIBLE GMRES METHOD WITH DEFLATION AT EACH ITERATION FOR THE SOLUTION OF NON-HERMITIAN LINEAR SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES
    Calandra, Henri
    Gratton, Serge
    Lago, Rafael
    Vasseur, Xavier
    Carvalho, Luiz Mariano
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (05): : S345 - S367
  • [24] PRECONDITIONED SOR-TYPE ITERATIVE METHODS FOR SOLVING MULITI-LINEAR SYSTEMS WITH L-TENSORS
    Shen, Rui-Ting
    Xie, Xue-Zhi
    Gu, Wei-Zhe
    PACIFIC JOURNAL OF OPTIMIZATION, 2021, 17 (04): : 663 - 680
  • [25] Implicit surface reconstruction of 3D objects: Preconditioned iterative methods for the CSRBF-type linear systems
    Itoh, T
    Kitagawa, T
    Nakata, S
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 2006, 89 (04): : 11 - 20
  • [26] Solving finite difference linear systems on GPUs: CUDA based Parallel Explicit Preconditioned Biconjugate Conjugate Gradient type Methods
    Gravvanis, G. A.
    Filelis-Papadopoulos, C. K.
    Giannoutakis, K. M.
    JOURNAL OF SUPERCOMPUTING, 2012, 61 (03): : 590 - 604
  • [27] Solving finite difference linear systems on GPUs: CUDA based Parallel Explicit Preconditioned Biconjugate Conjugate Gradient type Methods
    G. A. Gravvanis
    C. K. Filelis-Papadopoulos
    K. M. Giannoutakis
    The Journal of Supercomputing, 2012, 61 : 590 - 604
  • [28] Product-type skew-Hermitian triangular splitting iteration methods for strongly non-Hermitian positive definite linear systems
    Krukier, Lev A.
    Martynova, Tatiana S.
    Bai, Zhong-Zhi
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 232 (01) : 3 - 16