We improve upon indirect diagonalization arguments for lower bounds on explicit problems within the polynomial hierarchy. Our contributions are summarized as follows.
We present a technique that uniformly improves upon most known nonlinear time lower bounds for nondeterminism and alternating computation, on both subpolynomial (no(1)) space RAMs and sequential one-tape machines with random access to the input. We obtain improved lower bounds for Boolean satisfiability (SAT), as well as all NP-complete problems that have efficient reductions from SAT, and ∑k-SAT, for constant k ≥ 2. For example, SAT cannot be solved by random access machines using \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$n^{\sqrt{3}}$$
\end{document} time and subpolynomial space.We show how indirect diagonalization leads to time-space lower bounds for computation with bounded nondeterminism. For both the random access and multitape Turing machine models, we prove that for all k ≥ 1, there is a constant ck > 1 such that linear time with n1/k nondeterministic bits is not contained in deterministic \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$n^{{c}_{k}}$$
\end{document} time with subpolynomial space. This is used to prove that satisfiability of Boolean circuits with n inputs and nk size cannot be solved by deterministic multitape Turing machines running in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$${n^{{k \cdot {c}}_{k}}}$$
\end{document} time and subpolynomial space.