Inductive Time-Space Lower Bounds for Sat and Related Problems

被引:0
|
作者
Ryan Williams
机构
[1] Carnegie Mellon University,Computer Science Department
来源
computational complexity | 2006年 / 15卷
关键词
Time-space tradeoffs; lower bounds; polynomial-time hierarchy; satisfiability; diagonalization; bounded nondeterminism; 68Q17;
D O I
暂无
中图分类号
学科分类号
摘要
We improve upon indirect diagonalization arguments for lower bounds on explicit problems within the polynomial hierarchy. Our contributions are summarized as follows. We present a technique that uniformly improves upon most known nonlinear time lower bounds for nondeterminism and alternating computation, on both subpolynomial (no(1)) space RAMs and sequential one-tape machines with random access to the input. We obtain improved lower bounds for Boolean satisfiability (SAT), as well as all NP-complete problems that have efficient reductions from SAT, and ∑k-SAT, for constant k ≥ 2. For example, SAT cannot be solved by random access machines using \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$n^{\sqrt{3}}$$ \end{document} time and subpolynomial space.We show how indirect diagonalization leads to time-space lower bounds for computation with bounded nondeterminism. For both the random access and multitape Turing machine models, we prove that for all k ≥ 1, there is a constant ck > 1 such that linear time with n1/k nondeterministic bits is not contained in deterministic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$n^{{c}_{k}}$$ \end{document} time with subpolynomial space. This is used to prove that satisfiability of Boolean circuits with n inputs and nk size cannot be solved by deterministic multitape Turing machines running in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${n^{{k \cdot {c}}_{k}}}$$ \end{document} time and subpolynomial space.
引用
收藏
页码:433 / 470
页数:37
相关论文
共 50 条
  • [21] Width-Parameterized SAT: Time-space tradeoffs
    Allender, Eric
    Chen, Shiteng
    Lou, Tiancheng
    Papakonstantinou, Periklis A.
    Tang, Bangsheng
    Theory of Computing, 2014, 10 : 297 - 339
  • [22] TIME-SPACE EFFICIENT ALGORITHMS FOR COMPUTING CONVOLUTIONS AND RELATED PROBLEMS
    CARLSON, DA
    INFORMATION AND COMPUTATION, 1987, 75 (01) : 1 - 14
  • [23] Time-Space Lower Bounds for Finding Collisions in Merkle–Damgård Hash Functions
    Siyao Akshima
    Qipeng Guo
    Journal of Cryptology, 2024, 37
  • [24] Time-space lower bounds for directed ST-connectivity on graph automata models
    Barnes, G
    Edmonds, JA
    SIAM JOURNAL ON COMPUTING, 1998, 27 (04) : 1190 - 1202
  • [25] Time-Space Lower Bounds for Finding Collisions in Merkle-Damgard Hash Functions
    Akshima
    Guo, Siyao
    Liu, Qipeng
    ADVANCES IN CRYPTOLOGY - CRYPTO 2022, PT III, 2022, 13509 : 192 - 221
  • [26] Time-Space Lower Bounds for Bounded-Error Computation in the Random-Query Model
    Dinur, Itai
    PROCEEDINGS OF THE 2024 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2024, : 2900 - 2915
  • [27] Time-Space Lower Bounds for Finding Collisions in Merkle-Damgård Hash Functions
    Akshima
    Guo, Siyao
    Liu, Qipeng
    JOURNAL OF CRYPTOLOGY, 2024, 37 (02)
  • [28] An improved time-space lower bound for tautologies
    Scott Diehl
    Dieter van Melkebeek
    Ryan Williams
    Journal of Combinatorial Optimization, 2011, 22 : 325 - 338
  • [29] An improved time-space lower bound for tautologies
    Diehl, Scott
    van Melkebeek, Dieter
    Williams, Ryan
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2011, 22 (03) : 325 - 338
  • [30] An Improved Time-Space Lower Bound for Tautologies
    Diehl, Scott
    van Melkebeek, Dieter
    Williams, Ryan
    COMPUTING AND COMBINATORICS, PROCEEDINGS, 2009, 5609 : 429 - +