Inductive Time-Space Lower Bounds for Sat and Related Problems

被引:0
|
作者
Ryan Williams
机构
[1] Carnegie Mellon University,Computer Science Department
来源
computational complexity | 2006年 / 15卷
关键词
Time-space tradeoffs; lower bounds; polynomial-time hierarchy; satisfiability; diagonalization; bounded nondeterminism; 68Q17;
D O I
暂无
中图分类号
学科分类号
摘要
We improve upon indirect diagonalization arguments for lower bounds on explicit problems within the polynomial hierarchy. Our contributions are summarized as follows. We present a technique that uniformly improves upon most known nonlinear time lower bounds for nondeterminism and alternating computation, on both subpolynomial (no(1)) space RAMs and sequential one-tape machines with random access to the input. We obtain improved lower bounds for Boolean satisfiability (SAT), as well as all NP-complete problems that have efficient reductions from SAT, and ∑k-SAT, for constant k ≥ 2. For example, SAT cannot be solved by random access machines using \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$n^{\sqrt{3}}$$ \end{document} time and subpolynomial space.We show how indirect diagonalization leads to time-space lower bounds for computation with bounded nondeterminism. For both the random access and multitape Turing machine models, we prove that for all k ≥ 1, there is a constant ck > 1 such that linear time with n1/k nondeterministic bits is not contained in deterministic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$n^{{c}_{k}}$$ \end{document} time with subpolynomial space. This is used to prove that satisfiability of Boolean circuits with n inputs and nk size cannot be solved by deterministic multitape Turing machines running in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${n^{{k \cdot {c}}_{k}}}$$ \end{document} time and subpolynomial space.
引用
收藏
页码:433 / 470
页数:37
相关论文
共 50 条
  • [31] Quantum Time-Space Tradeoffs for Matrix Problems
    Beame, Paul
    Kornerup, Niels
    Whitmeyer, Michael
    PROCEEDINGS OF THE 56TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2024, 2024, : 596 - 607
  • [32] Space Lower Bounds for Graph Stream Problems
    Verma, Paritosh
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, TAMC 2019, 2019, 11436 : 635 - 646
  • [33] Sparsification Upper and Lower Bounds for Graph Problems and Not-All-Equal SAT
    Bart M. P. Jansen
    Astrid Pieterse
    Algorithmica, 2017, 79 : 3 - 28
  • [34] Sparsification Upper and Lower Bounds for Graph Problems and Not-All-Equal SAT
    Jansen, Bart M. P.
    Pieterse, Astrid
    ALGORITHMICA, 2017, 79 (01) : 3 - 28
  • [35] A Survey of Lower Bounds for Satisfiability and Related Problems
    van Melkebeek, Dieter
    FOUNDATIONS AND TRENDS IN THEORETICAL COMPUTER SCIENCE, 2006, 2 (03): : 197 - 303
  • [36] TIME-SPACE METHOD FOR MULTIDIMENSIONAL MELTING AND FREEZING PROBLEMS
    SAITOH, TS
    NAKAMURA, M
    GOMI, T
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1994, 37 (11) : 1793 - 1805
  • [37] Upper and Lower Time and Space Bounds for Planning
    Backstrom, Christer
    Jonsson, Peter
    ECAI 2016: 22ND EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, 285 : 716 - 724
  • [38] Time and space lower bounds for nonblocking implementations
    Jayanti, P
    Tan, K
    Toueg, S
    SIAM JOURNAL ON COMPUTING, 2000, 30 (02) : 438 - 456
  • [39] Conditional Lower Bounds for Space/Time Tradeoffs
    Goldstein, Isaac
    Kopelowitz, Tsvi
    Lewenstein, Moshe
    Porat, Ely
    ALGORITHMS AND DATA STRUCTURES: 15TH INTERNATIONAL SYMPOSIUM, WADS 2017, 2017, 10389 : 421 - 436
  • [40] The quenching of solutions to time-space fractional Kawarada problems
    Padgett, Joshua L.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (07) : 1583 - 1592