A new hybrid genetic algorithm for the maximally diverse grouping problem

被引:0
|
作者
Kavita Singh
Shyam Sundar
机构
[1] National Institute of Technology Raipur,Department of Computer Applications
关键词
Maximally diverse grouping problem; Steady-state genetic algorithm; Crossover; Replacement strategy; Local search;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a new hybrid approach (N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}$$\end{document}SGGA) combining steady-state grouping genetic algorithm with a local search for the maximally diverse grouping problem (MDGP) related to equal group-size. The MDGP is a well-known NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {NP}$$\end{document}-Hard combinatorial optimization problem and finds numerous applications in real world. N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}$$\end{document}SGGA employs particularly (a) crossover operator (b) the effective way of utilization of local search and (c) the additional replacement strategy, making it different from the existing genetic algorithm for the MDGP. On a set of large benchmark instances, N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}$$\end{document}SGGA is competitive in comparison to the existing best-known approaches in the literature and performs particularly well on large-size instances. Some important ingredients of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}$$\end{document}SGGA that shed some light on the adequacy of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}$$\end{document}SGGA are analyzed.
引用
收藏
页码:2921 / 2940
页数:19
相关论文
共 50 条
  • [41] A three-phase search approach with dynamic population size for solving the maximally diverse grouping problem
    Yang, Xiao
    Cai, Zonghui
    Jin, Ting
    Tang, Zheng
    Gao, Shangce
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2022, 302 (03) : 925 - 953
  • [42] A new hybrid genetic algorithm for the robust graph coloring problem
    Kong, Ying
    Wang, Fan
    Lim, Andrew
    Guo, Songshan
    Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science), 2003, 2903 : 125 - 136
  • [43] A new hybrid genetic algorithm for the capacitated vehicle routing problem
    Berger, J
    Barkaoui, M
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2003, 54 (12) : 1254 - 1262
  • [44] A new hybrid genetic algorithm for the robust graph coloring problem
    Kong, Y
    Wang, F
    Lim, A
    Guo, SS
    AI 2003: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2003, 2903 : 125 - 136
  • [45] A new hybrid genetic algorithm to solve nonlinear optimal problem
    Zhou, Li
    Miao, Ting
    Bao, Yongping
    Li, Jianguo
    Information, Management and Algorithms, Vol II, 2007, : 200 - 203
  • [46] A new hybrid genetic algorithm for job shop scheduling problem
    Ren Qing-dao-er-ji
    Wang, Yuping
    COMPUTERS & OPERATIONS RESEARCH, 2012, 39 (10) : 2291 - 2299
  • [47] A new grouping genetic algorithm for clustering problems
    Agustin-Blas, L. E.
    Salcedo-Sanz, S.
    Jimenez-Fernandez, S.
    Carro-Calvo, L.
    Del Ser, J.
    Portilla-Figueras, J. A.
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (10) : 9695 - 9703
  • [48] A NEW HYBRID GENETIC ALGORITHM FOR MAXIMUM INDEPENDENT SET PROBLEM
    Mehrabi, Saeed
    Mehrabi, Abbas
    Mehrabi, Ali D.
    ICSOFT 2009: PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES, VOL 2, 2009, : 314 - +
  • [49] Using Grouping Genetic Algorithm to Mine Diverse Group Stock Portfolio
    Chen, Chun-Hao
    Lu, Cheng-Yu
    Hong, Tzung-Pei
    Su, Ja-Hwung
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 4734 - 4738
  • [50] Hybrid firefly algorithm with grouping attraction for constrained optimization problem
    Cheng, Zhiwen
    Song, Haohao
    Wang, Jiquan
    Zhang, Hongyu
    Chang, Tiezhu
    Zhang, Mingxin
    KNOWLEDGE-BASED SYSTEMS, 2021, 220