A new hybrid genetic algorithm for the maximally diverse grouping problem

被引:0
|
作者
Kavita Singh
Shyam Sundar
机构
[1] National Institute of Technology Raipur,Department of Computer Applications
关键词
Maximally diverse grouping problem; Steady-state genetic algorithm; Crossover; Replacement strategy; Local search;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a new hybrid approach (N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}$$\end{document}SGGA) combining steady-state grouping genetic algorithm with a local search for the maximally diverse grouping problem (MDGP) related to equal group-size. The MDGP is a well-known NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {NP}$$\end{document}-Hard combinatorial optimization problem and finds numerous applications in real world. N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}$$\end{document}SGGA employs particularly (a) crossover operator (b) the effective way of utilization of local search and (c) the additional replacement strategy, making it different from the existing genetic algorithm for the MDGP. On a set of large benchmark instances, N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}$$\end{document}SGGA is competitive in comparison to the existing best-known approaches in the literature and performs particularly well on large-size instances. Some important ingredients of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}$$\end{document}SGGA that shed some light on the adequacy of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}$$\end{document}SGGA are analyzed.
引用
收藏
页码:2921 / 2940
页数:19
相关论文
共 50 条
  • [21] COMPARATIVE PERFORMANCE OF THREE METAHEURISTIC APPROACHES FOR THE MAXIMALLY DIVERSE GROUPING PROBLEM
    Palubeckis, Gintaras
    Karciauskas, Eimutis
    Riskus, Aleksas
    INFORMATION TECHNOLOGY AND CONTROL, 2011, 40 (04): : 277 - 285
  • [22] The Balanced Maximally Diverse Grouping Problem with Attribute Values and Varying Group Sizes
    Schulz, Arne
    OPERATIONS RESEARCH PROCEEDINGS 2021, 2022, : 148 - 153
  • [23] Solving the maximally diverse grouping problem by skewed general variable neighborhood search
    Brimberg, Jack
    Mladenovic, Nenad
    Urosevic, Dragan
    INFORMATION SCIENCES, 2015, 295 : 650 - 675
  • [24] A new grouping genetic algorithm for the quadratic multiple knapsack problem
    Singh, Alok
    Baghel, Anurag Singh
    EVOLUTIONARY COMPUTATION IN COMBINATORIAL OPTIMIZATION, PROCEEDINGS, 2007, 4446 : 210 - +
  • [25] Grouping Genetic Algorithm for the Blockmodel Problem
    James, Tabitha
    Brown, Evelyn
    Ragsdale, Cliff T.
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2010, 14 (01) : 103 - 111
  • [26] Hybrid grouping genetic algorithm for one-dimensional cutting stock problem
    School of Transportation, Wuhan Univ. of Technology, Wuhan 430063, China
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2006, 40 (06): : 1015 - 1018
  • [27] A new grouping genetic algorithm approach to the multiple traveling salesperson problem
    Singh, Alok
    Baghel, Anurag Singh
    SOFT COMPUTING, 2009, 13 (01) : 95 - 101
  • [28] A New Grouping Genetic Algorithm for the MapReduce Placement Problem in Cloud Computing
    Xu, Xiaoyong
    Tang, Maolin
    2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 1601 - 1608
  • [29] A new grouping genetic algorithm approach to the multiple traveling salesperson problem
    Alok Singh
    Anurag Singh Baghel
    Soft Computing, 2009, 13 : 95 - 101
  • [30] A grouping genetic algorithm for the microcell sectorization problem
    Brown, EC
    Vroblefski, M
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2004, 17 (06) : 589 - 598