A new hybrid genetic algorithm for the maximally diverse grouping problem

被引:0
|
作者
Kavita Singh
Shyam Sundar
机构
[1] National Institute of Technology Raipur,Department of Computer Applications
关键词
Maximally diverse grouping problem; Steady-state genetic algorithm; Crossover; Replacement strategy; Local search;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a new hybrid approach (N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}$$\end{document}SGGA) combining steady-state grouping genetic algorithm with a local search for the maximally diverse grouping problem (MDGP) related to equal group-size. The MDGP is a well-known NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {NP}$$\end{document}-Hard combinatorial optimization problem and finds numerous applications in real world. N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}$$\end{document}SGGA employs particularly (a) crossover operator (b) the effective way of utilization of local search and (c) the additional replacement strategy, making it different from the existing genetic algorithm for the MDGP. On a set of large benchmark instances, N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}$$\end{document}SGGA is competitive in comparison to the existing best-known approaches in the literature and performs particularly well on large-size instances. Some important ingredients of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}$$\end{document}SGGA that shed some light on the adequacy of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}$$\end{document}SGGA are analyzed.
引用
收藏
页码:2921 / 2940
页数:19
相关论文
共 50 条
  • [31] A Grouping Genetic Algorithm for the Intercell Scheduling Problem
    Wang, Shuai
    Du, Shaofeng
    Ma, Tao
    Li, Dongni
    2018 IEEE 14TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2018, : 956 - 961
  • [32] A hybrid genetic algorithm for machine part grouping
    Tariq, Adrian
    Hussain, Iftikhar
    Ghafoor, Abdul
    SECOND INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES 2006, PROCEEDINGS, 2006, : 624 - 629
  • [33] Hybrid grouping genetic algorithm for bin packing
    Falkenauer, Emanuel
    Journal of Heuristics, 2 (01): : 5 - 30
  • [34] A Hybrid Grouping Genetic Algorithm for Multiprocessor Scheduling
    Singh, Alok
    Sevaux, Marc
    Rossi, Andre
    CONTEMPORARY COMPUTING, PROCEEDINGS, 2009, 40 : 1 - +
  • [35] A Hybrid Grouping Genetic Algorithm for the Inventory Routing Problem with multi-tours of the Vehicle
    Sadok, A.
    Teghem, J.
    Chabchoub, H.
    INTERNATIONAL JOURNAL OF COMBINATORIAL OPTIMIZATION PROBLEMS AND INFORMATICS, 2010, 1 (02): : 42 - 61
  • [36] Maximally diverse grouping: an iterated tabu search approach
    Palubeckis, Gintaras
    Ostreika, Armantas
    Rubliauskas, Dalius
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2015, 66 (04) : 579 - 592
  • [37] A Hybrid Grouping Genetic Algorithm for the Multiple-Type Access Node Location Problem
    Alonso-Garrido, O.
    Salcedo-Sanz, S.
    Agustin-Blas, L. E.
    Ortiz-Garcia, E. G.
    Perez-Bellido, A. M.
    Portilla-Figueras, J. A.
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING, PROCEEDINGS, 2009, 5788 : 376 - 383
  • [38] A new hybrid genetic algorithm for the Stochastic loader problem
    Hong, Wang
    Pei-Xin, Zhao
    SNPD 2007: EIGHTH ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING, AND PARALLEL/DISTRIBUTED COMPUTING, VOL 1, PROCEEDINGS, 2007, : 582 - +
  • [39] A grouping genetic algorithm for the multiple traveling salesperson problem
    Brown, Evelyn C.
    Ragsdale, Cliff T.
    Carter, Arthur E.
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKING, 2007, 6 (02) : 333 - 347
  • [40] A hybrid genetic algorithm for machine-part grouping
    Tariq, Adnan
    Hussain, Iftikhar
    Ghafoor, Abdul
    COMPUTERS & INDUSTRIAL ENGINEERING, 2009, 56 (01) : 347 - 356