An Optimal Algorithm for Minimum-Link Rectilinear Paths in Triangulated Rectilinear Domains

被引:0
|
作者
Joseph S. B. Mitchell
Valentin Polishchuk
Mikko Sysikaski
Haitao Wang
机构
[1] Stony Brook University,
[2] Linköping University,undefined
[3] Google,undefined
[4] Utah State University,undefined
来源
Algorithmica | 2019年 / 81卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We present a new algorithm for finding minimum-link rectilinear paths among rectilinear obstacles in the plane. Given a triangulated rectilinear domain of h pairwise-disjoint rectilinear obstacles with a total of n vertices, our algorithm can find a minimum-link rectilinear path between any two points in O(n+hlogh)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n+ h \log h)$$\end{document} time. Further, within the same time our algorithm can build an O(n)-size data structure for any source point s, such that given any query point t, the number of edges of a minimum-link rectilinear path from s to t can be computed in O(logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log n)$$\end{document} time and the actual path can be output in additional time linear in the number of the edges of the path. The previously best algorithms for the problems run in O(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n \log n)$$\end{document} time.
引用
收藏
页码:289 / 316
页数:27
相关论文
共 46 条