An Optimal Algorithm for Minimum-Link Rectilinear Paths in Triangulated Rectilinear Domains

被引:0
|
作者
Joseph S. B. Mitchell
Valentin Polishchuk
Mikko Sysikaski
Haitao Wang
机构
[1] Stony Brook University,
[2] Linköping University,undefined
[3] Google,undefined
[4] Utah State University,undefined
来源
Algorithmica | 2019年 / 81卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We present a new algorithm for finding minimum-link rectilinear paths among rectilinear obstacles in the plane. Given a triangulated rectilinear domain of h pairwise-disjoint rectilinear obstacles with a total of n vertices, our algorithm can find a minimum-link rectilinear path between any two points in O(n+hlogh)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n+ h \log h)$$\end{document} time. Further, within the same time our algorithm can build an O(n)-size data structure for any source point s, such that given any query point t, the number of edges of a minimum-link rectilinear path from s to t can be computed in O(logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log n)$$\end{document} time and the actual path can be output in additional time linear in the number of the edges of the path. The previously best algorithms for the problems run in O(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n \log n)$$\end{document} time.
引用
收藏
页码:289 / 316
页数:27
相关论文
共 46 条
  • [31] SCALABLE EXACT VISUALIZATION OF ISOCONTOURS IN ROAD NETWORKS VIA MINIMUM-LINK PATHS
    Baum, Moritz
    Blaesius, Thomas
    Gemsa, Andreas
    Rutter, Ignaz
    Wegner, Franziska
    JOURNAL OF COMPUTATIONAL GEOMETRY, 2018, 9 (01) : 27 - 73
  • [32] An optimal algorithm for constructing an optimal bridge between two simple rectilinear polygons
    Wang, DP
    INFORMATION PROCESSING LETTERS, 2001, 79 (05) : 229 - 236
  • [33] Obstacle-avoiding Rectilinear Steiner Minimum Tree Construction: An Optimal Approach
    Huang, Tao
    Young, Evangeline F. Y.
    2010 IEEE AND ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN (ICCAD), 2010, : 610 - 613
  • [34] CONSTRUCTING THE OPTIMAL RECTILINEAR STEINER TREE DERIVABLE FROM A MINIMUM SPANNING TREE
    HO, JM
    VIJAYAN, G
    WONG, CK
    1989 IEEE INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN: DIGEST OF TECHNICAL PAPERS, 1989, : 6 - 9
  • [35] Improved parameterized algorithms for minimum link-length rectilinear spanning path problem
    Feng, Qilong
    Wang, Jianxin
    Xu, Chao
    Yao, Jinyi
    Chen, Jianer
    THEORETICAL COMPUTER SCIENCE, 2014, 560 : 158 - 171
  • [36] An Exact Algorithm for the Construction of Rectilinear Steiner Minimum Trees Among Complex Obstacles
    Huang, Tao
    Young, Evangeline F. Y.
    PROCEEDINGS OF THE 48TH ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2011, : 164 - 169
  • [37] Augmented Line Segment Based Algorithm for Constructing Rectilinear Steiner Minimum Tree
    Vani, V.
    Prasad, G. R.
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON COMMUNICATION AND ELECTRONICS SYSTEMS (ICCES), 2016, : 749 - 753
  • [38] An efficient rectilinear Steiner minimum tree algorithm based on ant colony optimization
    Hu, Y
    Jing, T
    Hong, XL
    Feng, Z
    Hu, XD
    Yan, GY
    2004 INTERNATIONAL CONFERENCE ON COMMUNICATION, CIRCUITS, AND SYSTEMS, VOLS 1 AND 2: VOL 1: COMMUNICATION THEORY AND SYSTEMS, 2004, : 1276 - 1280
  • [39] An O (n5/2 log n) algorithm for the Rectilinear Minimum Link-Distance Problem in three dimensions
    Wagner, David P.
    Drysdale, Robert Scot
    Stein, Clifford
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2009, 42 (05): : 376 - 387
  • [40] AN OPTIMAL PARALLEL ALGORITHM USING EXCLUSIVE READ WRITES FOR THE RECTILINEAR VORONOI DIAGRAM
    GUHA, S
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1993, 3 (01): : 37 - 52