An Optimal Algorithm for Minimum-Link Rectilinear Paths in Triangulated Rectilinear Domains

被引:0
|
作者
Joseph S. B. Mitchell
Valentin Polishchuk
Mikko Sysikaski
Haitao Wang
机构
[1] Stony Brook University,
[2] Linköping University,undefined
[3] Google,undefined
[4] Utah State University,undefined
来源
Algorithmica | 2019年 / 81卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We present a new algorithm for finding minimum-link rectilinear paths among rectilinear obstacles in the plane. Given a triangulated rectilinear domain of h pairwise-disjoint rectilinear obstacles with a total of n vertices, our algorithm can find a minimum-link rectilinear path between any two points in O(n+hlogh)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n+ h \log h)$$\end{document} time. Further, within the same time our algorithm can build an O(n)-size data structure for any source point s, such that given any query point t, the number of edges of a minimum-link rectilinear path from s to t can be computed in O(logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log n)$$\end{document} time and the actual path can be output in additional time linear in the number of the edges of the path. The previously best algorithms for the problems run in O(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n \log n)$$\end{document} time.
引用
收藏
页码:289 / 316
页数:27
相关论文
共 46 条
  • [21] OPTIMAL PARALLEL ALGORITHMS FOR RECTILINEAR LINK-DISTANCE PROBLEMS
    LINGAS, A
    MAHESHWARI, A
    SACK, JR
    ALGORITHMICA, 1995, 14 (03) : 261 - 289
  • [22] OPTIMAL RECTILINEAR MOVING OF A LOAD WITH A 2-LINK MANIPULATOR
    BOLOTNIK, NN
    KAPLUNOV, AA
    ENGINEERING CYBERNETICS, 1982, 20 (01): : 121 - 131
  • [23] AN OPTIMAL ALGORITHM FOR RECTILINEAR STEINER TREES FOR CHANNELS WITH OBSTACLES
    CHIANG, C
    SARRAFZADEH, M
    WONG, CK
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 1991, 19 (06) : 551 - 563
  • [24] MINIMUM-LINK C-ORIENTED PATHS: SINGLE-SOURCE QUERIES
    Adegeest, John
    Overmars, Mark
    Snoeyink, Jack
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1994, 4 (01) : 39 - 51
  • [25] On the Construction of Optimal Obstacle-Avoiding Rectilinear Steiner Minimum Trees
    Huang, Tao
    Li, Liang
    Young, Evangeline F. Y.
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2011, 30 (05) : 718 - 731
  • [26] An optimal O(n log n) algorithm for finding an enclosing planar rectilinear annulus of minimum width
    Gluchshenko, Olga N.
    Hamacher, Horst W.
    Tamir, Arie
    OPERATIONS RESEARCH LETTERS, 2009, 37 (03) : 168 - 170
  • [27] On the Minimum Link-Length Rectilinear Spanning Path Problem: Complexity and Algorithms
    Wang, Jianxin
    Tan, Peiqiang
    Yao, Jinyi
    Feng, Qilong
    Chen, Jianer
    IEEE TRANSACTIONS ON COMPUTERS, 2014, 63 (12) : 3092 - 3100
  • [28] Algorithm for the construction of Rectilinear Steiner Minimum Tree by identifying the clusters of points
    Vani, V.
    Prasad, G. R.
    2014 INTERNATIONAL CONFERENCE ON INFORMATION COMMUNICATION AND EMBEDDED SYSTEMS (ICICES), 2014,
  • [29] A PROBABLY FAST, PROVABLY OPTIMAL ALGORITHM FOR RECTILINEAR STEINER TREES
    DENEEN, LL
    SHUTE, GM
    THOMBORSON, CD
    RANDOM STRUCTURES & ALGORITHMS, 1994, 5 (04) : 535 - 557
  • [30] AN OPTIMAL APPROXIMATION ALGORITHM FOR THE RECTILINEAR M-CENTER PROBLEM
    KO, MT
    LEE, RCT
    CHANG, JS
    ALGORITHMICA, 1990, 5 (03) : 341 - 352