An Optimal Algorithm for Minimum-Link Rectilinear Paths in Triangulated Rectilinear Domains

被引:0
|
作者
Joseph S. B. Mitchell
Valentin Polishchuk
Mikko Sysikaski
Haitao Wang
机构
[1] Stony Brook University,
[2] Linköping University,undefined
[3] Google,undefined
[4] Utah State University,undefined
来源
Algorithmica | 2019年 / 81卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We present a new algorithm for finding minimum-link rectilinear paths among rectilinear obstacles in the plane. Given a triangulated rectilinear domain of h pairwise-disjoint rectilinear obstacles with a total of n vertices, our algorithm can find a minimum-link rectilinear path between any two points in O(n+hlogh)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n+ h \log h)$$\end{document} time. Further, within the same time our algorithm can build an O(n)-size data structure for any source point s, such that given any query point t, the number of edges of a minimum-link rectilinear path from s to t can be computed in O(logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log n)$$\end{document} time and the actual path can be output in additional time linear in the number of the edges of the path. The previously best algorithms for the problems run in O(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n \log n)$$\end{document} time.
引用
收藏
页码:289 / 316
页数:27
相关论文
共 46 条
  • [1] An Optimal Algorithm for Minimum-Link Rectilinear Paths in Triangulated Rectilinear Domains
    Mitchell, Joseph S. B.
    Polishchuk, Valentin
    Sysikaski, Mikko
    Wang, Haitao
    AUTOMATA, LANGUAGES, AND PROGRAMMING, PT I, 2015, 9134 : 947 - 959
  • [2] An Optimal Algorithm for Minimum-Link Rectilinear Paths in Triangulated Rectilinear Domains
    Mitchell, Joseph S. B.
    Polishchuk, Valentin
    Sysikaski, Mikko
    Wang, Haitao
    ALGORITHMICA, 2019, 81 (01) : 289 - 316
  • [3] Minimum-link shortest paths for polygons amidst rectilinear obstacles
    Kim, Mincheol
    Ahn, Hee-Kap
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2022, 103
  • [5] AN OPTIMAL ALGORITHM FOR THE RECTILINEAR LINK CENTER OF A RECTILINEAR POLYGON
    NILSSON, BJ
    SCHUIERER, S
    LECTURE NOTES IN COMPUTER SCIENCE, 1991, 519 : 249 - 260
  • [6] An optimal algorithm for the rectilinear link center of a rectilinear polygon
    Nilsson, BJ
    Schuierer, S
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1996, 6 (03): : 169 - 194
  • [7] Rectilinear paths with minimum segment lengths
    Massberg, Jens
    Nieberg, Tim
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (12) : 1769 - 1775
  • [8] Minimum-link paths revisited
    Mitchell, Joseph S. B.
    Polishchuk, Valentin
    Sysikaski, Mikko
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2014, 47 (06): : 651 - 667
  • [9] RECTILINEAR SHORTEST PATHS AND MINIMUM SPANNING-TREES IN THE PRESENCE OF RECTILINEAR OBSTACLES
    WU, YF
    WIDMAYER, P
    SCHLAG, MDF
    WONG, CK
    IEEE TRANSACTIONS ON COMPUTERS, 1987, 36 (03) : 321 - 331
  • [10] RECTILINEAR SHORTEST PATHS AND MINIMUM SPANNING TREES IN THE PRESENCE OF RECTILINEAR OBSTACLES.
    Wu, Ying-Fung
    Widmayer, Peter
    Schlag, Martine D.F.
    Wong, C.K.
    IEEE Transactions on Computers, 1987, C-36 (03) : 321 - 331