Space-Time Discontinuous Galerkin Methods for Weak Solutions of Hyperbolic Linear Symmetric Friedrichs Systems

被引:0
|
作者
Daniele Corallo
Willy Dörfler
Christian Wieners
机构
[1] Institute of Applied and Numerical Mathematics,
[2] KIT,undefined
来源
关键词
Weak solution of linear symmetric Friedrichs systems; Discontinuous Galerkin methods in space and time; Error estimators for first-order systems; 35K20; 65M15; 65M60; 65M55;
D O I
暂无
中图分类号
学科分类号
摘要
We study weak solutions and its approximation of hyperbolic linear symmetric Friedrichs systems describing acoustic, elastic, or electro-magnetic waves. For the corresponding first-order systems we construct discontinuous Galerkin discretizations in space and time with full upwind, and we show primal and dual consistency. Stability and convergence estimates are provided with respect to a mesh-dependent DG norm which includes the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textrm{L}}_2$$\end{document} norm at final time. Numerical experiments confirm that the a priori results are of optimal order also for solutions with low regularity, and we show that the error in the DG norm can be closely approximated with a residual-type error indicator.
引用
收藏
相关论文
共 50 条
  • [41] Hybridizable discontinuous Galerkin methods for space-time fractional advection-dispersion equations
    Zhao, Jingjun
    Zhao, Wenjiao
    Xu, Yang
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2023, 442
  • [42] A priori error analysis of space-time Trefftz discontinuous Galerkin methods for wave problems
    Kretzschmar, Fritz
    Moiola, Andrea
    Perugia, Ilaria
    Schnepp, Sascha M.
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (04) : 1599 - 1635
  • [43] RESIDUAL BASED ERROR ESTIMATES FOR THE SPACE-TIME DISCONTINUOUS GALERKIN METHOD APPLIED TO NONLINEAR HYPERBOLIC EQUATIONS
    Dolejsi, Vit
    Roskovec, Filip
    [J]. PROCEEDINGS OF THE CONFERENCE ALGORITMY 2016, 2016, : 113 - 124
  • [44] Numerical Diffusion Control of a Space-Time Discontinuous Galerkin Method
    Borrel, Michel
    Ryan, Juliette
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2009, 5 (2-4) : 469 - 483
  • [45] Space-Time Discontinuous Galerkin Method for Maxwell's Equations
    Xie, Ziqing
    Wang, Bo
    Zhang, Zhimin
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2013, 14 (04) : 916 - 939
  • [46] Space-time discontinuous Galerkin method for nonlinear water waves
    van der Vegt, J. J. W.
    Xu, Yan
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 224 (01) : 17 - 39
  • [47] A space-time discontinuous Galerkin method for the elastic wave equation
    Antonietti, Paola F.
    Mazzieri, Ilario
    Migliorini, Francesco
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 419
  • [48] hp-VERSION SPACE-TIME DISCONTINUOUS GALERKIN METHODS FOR PARABOLIC PROBLEMS ON PRISMATIC MESHES
    Cangiani, Andrea
    Dong, Zhaonan
    Georgoulis, Emmanuil H.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (04): : A1251 - A1279
  • [49] Tensor-product preconditioners for higher-order space-time discontinuous Galerkin methods
    Diosady, Laslo T.
    Murman, Scott M.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 330 : 296 - 318
  • [50] Entropy Stable Space-Time Discontinuous Galerkin Schemes with Summation-by-Parts Property for Hyperbolic Conservation Laws
    Friedrich, Lucas
    Schnuecke, Gero
    Winters, Andrew R.
    Fernandez, David C. Del Rey
    Gassner, Gregor J.
    Carpenter, Mark H.
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (01) : 175 - 222