Covering symmetric supermodular functions by graphs

被引:0
|
作者
András A. Benczúr
András Frank
机构
[1] Computer and Automation Institute,
[2] Hungarian Academy of Sciences,undefined
[3] and Department of Operations Research,undefined
[4] Eötvös University,undefined
[5] Budapest,undefined
[6] e-mail: benczur@cs.elte.hu,undefined
[7] Department of Operations Research,undefined
[8] Eötvös University,undefined
[9] Rákóczi út 5,undefined
[10] Budapest,undefined
[11] Hungary,undefined
[12] H-1088 and Ericsson Traffic Laboratory,undefined
[13] Laborc u.1. Budapest,undefined
[14] Hungary,undefined
[15] H-1037,undefined
[16] e-mail: frank@cs.elte.hu,undefined
来源
Mathematical Programming | 1999年 / 84卷
关键词
Mathematics Subject Classification (1991): 05C70, 90C27;
D O I
暂无
中图分类号
学科分类号
摘要
The minimum number of edges of an undirected graph covering a symmetric, supermodular set-function is determined. As a special case, we derive an extension of a theorem of J. Bang-Jensen and B. Jackson on hypergraph connectivity augmentation.
引用
收藏
页码:483 / 503
页数:20
相关论文
共 50 条
  • [41] RANDOM GRAPHS AND COVERING GRAPHS OF POSETS
    BOLLOBAS, B
    BRIGHTWELL, G
    NESETRIL, J
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1986, 3 (03): : 245 - 255
  • [42] A new partitioning strategy based on supermodular functions
    Patkar, S
    Batterywala, SH
    Chandramouli, M
    Narayanan, H
    TENTH INTERNATIONAL CONFERENCE ON VLSI DESIGN, PROCEEDINGS, 1997, : 32 - 37
  • [43] A REMARK ON COVERING GRAPHS
    HOLUB, P
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1985, 2 (03): : 321 - 322
  • [44] COVERING GRAPHS BY CYCLES
    FAN, GH
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1992, 5 (04) : 491 - 496
  • [45] CLIQUE COVERING OF GRAPHS
    PYBER, L
    COMBINATORICA, 1986, 6 (04) : 393 - 398
  • [46] REORIENTATIONS OF COVERING GRAPHS
    BRIGHTWELL, G
    NESETRIL, J
    DISCRETE MATHEMATICS, 1991, 88 (2-3) : 129 - 132
  • [47] Covering regular graphs
    Kratochvil, J
    Proskurowski, A
    Telle, JA
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1997, 71 (01) : 1 - 16
  • [48] Covering arrays on graphs
    Meagher, K
    Stevens, B
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2005, 95 (01) : 134 - 151
  • [49] Arborescences of covering graphs
    Chepuri, Sunita
    Dowd, C. J.
    Hardt, Andrew
    Michel, Gregory
    Zhang, Sylvester W.
    Zhang, Valerie
    ALGEBRAIC COMBINATORICS, 2022, 5 (02):
  • [50] Bipartite covering graphs
    Archdeacon, D
    Kwak, JH
    Lee, J
    Sohn, MY
    DISCRETE MATHEMATICS, 2000, 214 (1-3) : 51 - 63