Covering symmetric supermodular functions by graphs

被引:0
|
作者
András A. Benczúr
András Frank
机构
[1] Computer and Automation Institute,
[2] Hungarian Academy of Sciences,undefined
[3] and Department of Operations Research,undefined
[4] Eötvös University,undefined
[5] Budapest,undefined
[6] e-mail: benczur@cs.elte.hu,undefined
[7] Department of Operations Research,undefined
[8] Eötvös University,undefined
[9] Rákóczi út 5,undefined
[10] Budapest,undefined
[11] Hungary,undefined
[12] H-1088 and Ericsson Traffic Laboratory,undefined
[13] Laborc u.1. Budapest,undefined
[14] Hungary,undefined
[15] H-1037,undefined
[16] e-mail: frank@cs.elte.hu,undefined
来源
Mathematical Programming | 1999年 / 84卷
关键词
Mathematics Subject Classification (1991): 05C70, 90C27;
D O I
暂无
中图分类号
学科分类号
摘要
The minimum number of edges of an undirected graph covering a symmetric, supermodular set-function is determined. As a special case, we derive an extension of a theorem of J. Bang-Jensen and B. Jackson on hypergraph connectivity augmentation.
引用
收藏
页码:483 / 503
页数:20
相关论文
共 50 条