Covering symmetric supermodular functions by graphs

被引:0
|
作者
András A. Benczúr
András Frank
机构
[1] Computer and Automation Institute,
[2] Hungarian Academy of Sciences,undefined
[3] and Department of Operations Research,undefined
[4] Eötvös University,undefined
[5] Budapest,undefined
[6] e-mail: benczur@cs.elte.hu,undefined
[7] Department of Operations Research,undefined
[8] Eötvös University,undefined
[9] Rákóczi út 5,undefined
[10] Budapest,undefined
[11] Hungary,undefined
[12] H-1088 and Ericsson Traffic Laboratory,undefined
[13] Laborc u.1. Budapest,undefined
[14] Hungary,undefined
[15] H-1037,undefined
[16] e-mail: frank@cs.elte.hu,undefined
来源
Mathematical Programming | 1999年 / 84卷
关键词
Mathematics Subject Classification (1991): 05C70, 90C27;
D O I
暂无
中图分类号
学科分类号
摘要
The minimum number of edges of an undirected graph covering a symmetric, supermodular set-function is determined. As a special case, we derive an extension of a theorem of J. Bang-Jensen and B. Jackson on hypergraph connectivity augmentation.
引用
收藏
页码:483 / 503
页数:20
相关论文
共 50 条
  • [31] Supermodular functions and the complexity of MAX CSP
    Cohen, D
    Cooper, M
    Jeavons, P
    Krokhin, A
    DISCRETE APPLIED MATHEMATICS, 2005, 149 (1-3) : 53 - 72
  • [32] Chromatic symmetric functions and H-free graphs
    Angèle M. Hamel
    Chính T. Hoàng
    Jake E. Tuero
    Graphs and Combinatorics, 2019, 35 : 815 - 825
  • [33] On the cores of games arising from integer edge covering functions of graphs
    Boram Park
    Suh-Ryung Kim
    Hye Kyung Kim
    Journal of Combinatorial Optimization, 2013, 26 : 786 - 798
  • [34] On the cores of games arising from integer edge covering functions of graphs
    Park, Boram
    Kim, Suh-Ryung
    Kim, Hye Kyung
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2013, 26 (04) : 786 - 798
  • [35] Covering graphs: The covering problem solved
    Caro, Y
    Yuster, R
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1998, 83 (02) : 273 - 282
  • [36] Permutation polytopes corresponding to strongly supermodular functions
    Hwang, FK
    Lee, JS
    Rothblum, UG
    DISCRETE APPLIED MATHEMATICS, 2004, 142 (1-3) : 87 - 97
  • [37] Covering a symmetric poset by symmetric chains
    Fleiner, T
    COMBINATORICA, 1997, 17 (03) : 339 - 344
  • [38] Covering a symmetric poset by symmetric chains
    Tamás Fleiner
    Combinatorica, 1997, 17 : 339 - 344
  • [39] On symmetric functions and symmetric functions of symmetric functions
    O'Toole, AL
    ANNALS OF MATHEMATICAL STATISTICS, 1931, 2 : 103 - 149
  • [40] On Submodular and Supermodular Functions on Lattices and Related Structures
    Simovici, Dan A.
    2014 IEEE 44TH INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC (ISMVL 2014), 2014, : 202 - 207