Some basic properties of the generalized bi-periodic Fibonacci and Lucas sequences

被引:0
|
作者
Elif Tan
Ho-Hon Leung
机构
[1] Ankara University,Department of Mathematics, Faculty of Science
[2] UAEU,Department of Mathematical Sciences
关键词
Horadam sequence; Bi-periodic Fibonacci sequence; Matrix method; 11B39; 05A15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider a generalization of Horadam sequence {wn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{ w_{n} \} $\end{document} which is defined by the recurrence relation wn=χ(n)wn−1+cwn−2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$w_{n}=\chi ( n ) w_{n-1}+cw_{n-2}$\end{document}, where χ(n)=a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\chi ( n ) =a$\end{document} if n is even, χ(n)=b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\chi ( n ) =b$\end{document} if n is odd with arbitrary initial conditions w0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$w_{0}$\end{document}, w1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$w_{1}$\end{document} and nonzero real numbers a, b and c. As a special case, by taking the initial conditions 0, 1 and 2, b we define the sequences {un}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{ u_{n} \} $\end{document} and {vn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{ v_{n} \} $\end{document}, respectively. The main purpose of this study is to derive some basic properties of the sequences {un}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{ u _{n} \} $\end{document}, {vn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{ v_{n} \} $\end{document} and {wn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{ w_{n} \} $\end{document} by using a matrix approach.
引用
收藏
相关论文
共 50 条
  • [31] Convolutions of the bi-periodic Fibonacci numbers
    Komatsu, Takao
    Ramirez, Jose L.
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (02): : 565 - 577
  • [32] Some Golden Ratio generalized Fibonacci and Lucas sequences
    Leyendekkers, J. V.
    Shannon, A. G.
    [J]. NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2016, 22 (01) : 33 - 41
  • [33] DEDEKIND SUMS AND SOME GENERALIZED FIBONACCI AND LUCAS SEQUENCES
    Dilcher, Karl
    Meyer, Jeffrey L.
    [J]. FIBONACCI QUARTERLY, 2010, 48 (03): : 260 - 264
  • [34] On r-circulant matrices with generalized bi-periodic Fibonacci numbers
    Dagli, Mehmet
    Tan, Elif
    Olmez, Oktay
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (03) : 2003 - 2014
  • [35] Some properties of the generalized Fibonacci and Lucas sequences related to the extended Hecke groups
    Ikikardes, Sebahattin
    Sarigedik, Zehra
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [36] Some properties of the generalized Fibonacci and Lucas sequences related to the extended Hecke groups
    Sebahattin İkikardes
    Zehra Sarıgedik
    [J]. Journal of Inequalities and Applications, 2013
  • [38] On r-circulant matrices with generalized bi-periodic Fibonacci numbers
    Mehmet Daǧlı
    Elif Tan
    Oktay Ölmez
    [J]. Journal of Applied Mathematics and Computing, 2022, 68 : 2003 - 2014
  • [39] Some Properties of the Generalized Fibonacci and Lucas Numbers
    Djordjevic, Gospava B.
    Djordjevic, Snezana S.
    [J]. FILOMAT, 2020, 34 (08) : 2655 - 2665
  • [40] A Generalization of Dual Bi-Periodic Fibonacci Quaternions
    Tan, E.
    Gok, I
    [J]. JOURNAL OF MATHEMATICAL EXTENSION, 2019, 13 (01) : 67 - 81