Some basic properties of the generalized bi-periodic Fibonacci and Lucas sequences

被引:0
|
作者
Elif Tan
Ho-Hon Leung
机构
[1] Ankara University,Department of Mathematics, Faculty of Science
[2] UAEU,Department of Mathematical Sciences
关键词
Horadam sequence; Bi-periodic Fibonacci sequence; Matrix method; 11B39; 05A15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider a generalization of Horadam sequence {wn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{ w_{n} \} $\end{document} which is defined by the recurrence relation wn=χ(n)wn−1+cwn−2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$w_{n}=\chi ( n ) w_{n-1}+cw_{n-2}$\end{document}, where χ(n)=a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\chi ( n ) =a$\end{document} if n is even, χ(n)=b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\chi ( n ) =b$\end{document} if n is odd with arbitrary initial conditions w0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$w_{0}$\end{document}, w1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$w_{1}$\end{document} and nonzero real numbers a, b and c. As a special case, by taking the initial conditions 0, 1 and 2, b we define the sequences {un}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{ u_{n} \} $\end{document} and {vn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{ v_{n} \} $\end{document}, respectively. The main purpose of this study is to derive some basic properties of the sequences {un}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{ u _{n} \} $\end{document}, {vn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{ v_{n} \} $\end{document} and {wn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{ w_{n} \} $\end{document} by using a matrix approach.
引用
收藏
相关论文
共 50 条
  • [21] ON THE SUM OF RECIPROCAL OF GENERALIZED BI-PERIODIC FIBONACCI NUMBERS
    Basbuk, Musa
    Yazlik, Yasin
    [J]. MISKOLC MATHEMATICAL NOTES, 2016, 17 (01) : 35 - 41
  • [22] On the Bi-Periodic Lucas Octonions
    Nazmiye Yilmaz
    Yasin Yazlik
    Necati Taskara
    [J]. Advances in Applied Clifford Algebras, 2017, 27 : 1927 - 1937
  • [23] SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES
    Irmak, Nurettin
    Alp, Murat
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2013, 42 (04): : 331 - 338
  • [24] SOME SUBSEQUENCES OF THE GENERALIZED FIBONACCI AND LUCAS SEQUENCES
    Kilic, Emrah
    Kilic, Elif Tan
    [J]. UTILITAS MATHEMATICA, 2015, 97 : 233 - 239
  • [25] On the Bi-Periodic Lucas Octonions
    Yilmaz, Nazmiye
    Yazlik, Yasin
    Taskara, Necati
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (02) : 1927 - 1937
  • [26] Some identities of the generalized Fibonacci and Lucas sequences
    Yang, Jizhen
    Zhang, Zhizheng
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2018, 339 : 451 - 458
  • [27] ON THE RECIPROCAL SUMS OF SQUARE OF GENERALIZED BI-PERIODIC FIBONACCI NUMBERS
    Choi, Ginkyu
    Choo, Younseok
    [J]. MISKOLC MATHEMATICAL NOTES, 2018, 19 (01) : 201 - 209
  • [28] ALGEBRAIC PROPERTIES OF BI-PERIODIC DUAL FIBONACCI QUATERNIONS
    Ates, F.
    Gok, I
    Ekmekci, N.
    [J]. KRAGUJEVAC JOURNAL OF MATHEMATICS, 2019, 43 (01): : 99 - 107
  • [29] Some higher-order identities for generalized bi-periodic Horadam sequences
    Leung, Ho-Hon
    Tan, Elif
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2020, 44 (05) : 1687 - 1700
  • [30] PERIODIC FIBONACCI AND LUCAS SEQUENCES
    LEWIN, M
    [J]. FIBONACCI QUARTERLY, 1991, 29 (04): : 310 - 315