Convolutions of the bi-periodic Fibonacci numbers

被引:1
|
作者
Komatsu, Takao [1 ]
Ramirez, Jose L. [2 ]
机构
[1] Zhejiang Sci Tech Univ, Sch Sci, Dept Math, Hangzhou 310018, Peoples R China
[2] Univ Nacl Colombia, Dept Matemat, Bogota, Colombia
来源
关键词
bi-periodic Fibonacci numbers; convolutions; symmetric formulas; IDENTITIES; BERNOULLI; RECURRENCES;
D O I
10.15672/hujms.568340
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let q(n) be the bi-periodic Fibonacci numbers, defined by q(n) = c(n)q(n-1) + q(n-2) (n >= 2) with q(0) = 0 and q(1) = 1, where c(n) = a if n is even, c(n) = b if n is odd, where a and b are nonzero real numbers. When c(n) = a = b = 1, q(n) = F-n are Fibonacci numbers. In this paper, the convolution identities of order 2, 3 and 4 for the bi-periodic Fibonacci numbers q(n) are given with binomial (or multinomial) coefficients, by using the symmetric formulas.
引用
收藏
页码:565 / 577
页数:13
相关论文
共 50 条