The Brezis–Nirenberg Problem for the Fractional p-Laplacian in Unbounded Domains

被引:0
|
作者
Yan Sheng Shen
机构
[1] Jiangsu University,School of Mathematical Sciences
关键词
Brezis–Nirenberg problem; fractional Poincaré inequality; fractional ; -Laplacian; unbounded cylinder type domains; concentration–compactness principle; 35R11; 35A23; 35A15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the existence of nontrivial solutions to the well-known Brezis–Nirenberg problem involving the fractional p-Laplace operator in unbounded cylinder type domains. By means of the fractional Poincaré inequality in unbounded cylindrical domains, we first study the asymptotic property of the first eigenvalue λp,s(ωδ^)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda _{p,s}}(\widehat {{\omega _\delta }})$$\end{document} with respect to the domain (ωδ^)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\widehat {{\omega _\delta }})$$\end{document}. Then, by applying the concentration-compactness principle for fractional Sobolev spaces in unbounded domains, we prove the existence results. The present work complements the results of Mosconi–Perera–Squassina–Yang [The Brezis–Nirenberg problem for the fractional p-Laplacian. Calc. Var. Partial Differential Equations, 55(4), 25 pp. 2016] to unbounded domains and extends the classical Brezis–Nirenberg type results of Ramos–Wang–Willem [Positive solutions for elliptic equations with critical growth in unbounded domains. In: Chapman Hall/CRC Press, Boca Raton, 2000, 192–199] to the fractional p-Laplacian setting.
引用
收藏
页码:2181 / 2206
页数:25
相关论文
共 50 条
  • [41] The Brezis-Nirenberg problem for fractional systems with Hardy potentials
    Shen, Yansheng
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (03) : 1341 - 1358
  • [42] The Dirichlet problem for the fractional p-Laplacian evolution equation
    Luis Vazquez, Juan
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (07) : 6038 - 6056
  • [43] On fractional p-Laplacian parabolic problem with general data
    Abdellaoui, B.
    Attar, A.
    Bentifour, R.
    Peral, I.
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (02) : 329 - 356
  • [44] On a perturbed p(x)-Laplacian problem in bounded and unbounded domains
    Cammaroto, F.
    Vilasi, L.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 402 (01) : 71 - 83
  • [45] Local and global estimates for solutions of systems involving the p-Laplacian in unbounded domains
    Bechah, A.
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2001,
  • [46] Limiting dynamics for stochastic delay p-Laplacian equation on unbounded thin domains
    Li, Fuzhi
    Li, Dingshi
    Freitas, Mirelson M.
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2024, 18 (02)
  • [47] Limiting dynamics for stochastic delay p-Laplacian equation on unbounded thin domains
    Fuzhi Li
    Dingshi Li
    Mirelson M. Freitas
    [J]. Banach Journal of Mathematical Analysis, 2024, 18
  • [48] On the Brezis-Nirenberg Problem
    Schechter, M.
    Zou, Wenming
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 197 (01) : 337 - 356
  • [49] PRINCIPAL EIGENVALUES FOR THE FRACTIONAL p-LAPLACIAN WITH UNBOUNDED SIGN-CHANGING WEIGHTS
    Asso, Oumarou
    Cuesta, Mabel
    Doumate, Jonas Tele
    Leadi, Liamidi
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 2023 (38)
  • [50] On the fractional p-Laplacian problems
    Q-Heung Choi
    Tacksun Jung
    [J]. Journal of Inequalities and Applications, 2021