On the Brezis-Nirenberg Problem

被引:56
|
作者
Schechter, M. [1 ]
Zou, Wenming [2 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
NONLINEAR ELLIPTIC PROBLEMS; CRITICAL SOBOLEV EXPONENTS; SIGN CHANGING SOLUTIONS; MIN-MAX THEOREMS; MORSE INDEX; NODAL SOLUTIONS; CRITICAL-POINTS; EQUATIONS; EXISTENCE; LINKING;
D O I
10.1007/s00205-009-0288-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the following Brezis-Nirenberg problem (Comm Pure Appl Math 36: 437-477, 1983): -Delta u = lambda u + |u|(2)*(- 2)u, u is an element of H(0)(1) (Omega), where Omega is a bounded smooth domain of R(N) (N >= 7) and 2* is the critical Sobolev exponent. We show that, for each fixed lambda > 0, this problem has infinitely many sign-changing solutions. In particular, if lambda >= lambda(1), the Brezis-Nirenberg problem has and only has infinitely many sign-changing solutions except zero. The main tool is the estimates of Morse indices of nodal solutions.
引用
收藏
页码:337 / 356
页数:20
相关论文
共 50 条
  • [1] The Brezis-Nirenberg problem on S
    Bandle, C
    Benguria, R
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 178 (01) : 264 - 279
  • [2] On the generalised Brezis-Nirenberg problem
    Anoop, T., V
    Das, Ujjal
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2023, 30 (01):
  • [3] ON A BREZIS-NIRENBERG TYPE PROBLEM
    Catrina, Florin
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2006,
  • [4] ON THE BREZIS-NIRENBERG PROBLEM IN A BALL
    Chen, Zhijie
    Zou, Wenming
    [J]. DIFFERENTIAL AND INTEGRAL EQUATIONS, 2012, 25 (5-6) : 527 - 542
  • [5] The Brezis-Nirenberg problem for nonlocal systems
    Faria, Luiz F. O.
    Miyagaki, Olimpio H.
    Pereira, Fabio R.
    Squassina, Marco
    Zhang, Chengxiang
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2016, 5 (01) : 85 - 103
  • [6] A BREZIS-NIRENBERG PROBLEM ON HYPERBOLIC SPACES
    Carriao, Paulo Cesar
    Lehrer, Raquel
    Miyagaki, Olimpio Hiroshi
    Vicente, Andre
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2019,
  • [7] EXISTENCE OF SOLUTIONS FOR THE BREZIS-NIRENBERG PROBLEM
    De Paiva, Francisco O.
    Miyagaki, Olimpio H.
    Presoto, Adilson E.
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2023, 61 (02) : 651 - 659
  • [8] MULTIPLE SOLUTIONS FOR THE BREZIS-NIRENBERG PROBLEM
    Clapp, Monica
    Weth, Tobias
    [J]. ADVANCES IN DIFFERENTIAL EQUATIONS, 2005, 10 (04) : 463 - 480
  • [9] On a Brezis-Nirenberg type quasilinear problem
    Guo, Yuxia
    Liu, Jiaquan
    Wang, Zhi-Qiang
    [J]. JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (01) : 719 - 753
  • [10] The Brezis-Nirenberg problem for fractional elliptic operators
    Chen, Ko-Shin
    Montenegro, Marcos
    Yan, Xiaodong
    [J]. MATHEMATISCHE NACHRICHTEN, 2017, 290 (10) : 1491 - 1511