The Brezis-Nirenberg problem on S

被引:35
|
作者
Bandle, C
Benguria, R
机构
[1] Univ Basel, Inst Math, CH-4051 Basel, Switzerland
[2] Pontificia Univ Catolica Chile, Dept Fis, Santiago 22, Chile
关键词
nonlinear elliptic boundary value problems critical Sobolev exponent;
D O I
10.1006/jdeq.2001.4006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study existence and nonexistence of solutions to the Brezis Nirenberg problem for different values of lambda in geodesic spheres on S-3. The picture differs considerably from the one in the Euclidean space. It is shown that large spheres containing the hemisphere have two different type of radial solutions for negative values of lambda. Numerical results indicate that for lambda very small the solutions have a maximum near the boundary, whereas for larger values of lambda the maximum is at the origin. The techniques used area Pohozaev type identities, concentration-compactness lemma and numerical methods. (C) 2002 Elsevier Science.
引用
收藏
页码:264 / 279
页数:16
相关论文
共 50 条
  • [1] On the Brezis-Nirenberg Problem
    Schechter, M.
    Zou, Wenming
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 197 (01) : 337 - 356
  • [2] On the generalised Brezis-Nirenberg problem
    Anoop, T., V
    Das, Ujjal
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2023, 30 (01):
  • [3] ON A BREZIS-NIRENBERG TYPE PROBLEM
    Catrina, Florin
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2006,
  • [4] ON THE BREZIS-NIRENBERG PROBLEM IN A BALL
    Chen, Zhijie
    Zou, Wenming
    [J]. DIFFERENTIAL AND INTEGRAL EQUATIONS, 2012, 25 (5-6) : 527 - 542
  • [5] The Brezis-Nirenberg problem for nonlocal systems
    Faria, Luiz F. O.
    Miyagaki, Olimpio H.
    Pereira, Fabio R.
    Squassina, Marco
    Zhang, Chengxiang
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2016, 5 (01) : 85 - 103
  • [6] A BREZIS-NIRENBERG PROBLEM ON HYPERBOLIC SPACES
    Carriao, Paulo Cesar
    Lehrer, Raquel
    Miyagaki, Olimpio Hiroshi
    Vicente, Andre
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2019,
  • [7] EXISTENCE OF SOLUTIONS FOR THE BREZIS-NIRENBERG PROBLEM
    De Paiva, Francisco O.
    Miyagaki, Olimpio H.
    Presoto, Adilson E.
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2023, 61 (02) : 651 - 659
  • [8] MULTIPLE SOLUTIONS FOR THE BREZIS-NIRENBERG PROBLEM
    Clapp, Monica
    Weth, Tobias
    [J]. ADVANCES IN DIFFERENTIAL EQUATIONS, 2005, 10 (04) : 463 - 480
  • [9] On a Brezis-Nirenberg type quasilinear problem
    Guo, Yuxia
    Liu, Jiaquan
    Wang, Zhi-Qiang
    [J]. JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (01) : 719 - 753
  • [10] The Brezis-Nirenberg problem for fractional elliptic operators
    Chen, Ko-Shin
    Montenegro, Marcos
    Yan, Xiaodong
    [J]. MATHEMATISCHE NACHRICHTEN, 2017, 290 (10) : 1491 - 1511