Limiting dynamics for stochastic delay p-Laplacian equation on unbounded thin domains

被引:0
|
作者
Li, Fuzhi [1 ]
Li, Dingshi [2 ]
Freitas, Mirelson M. [3 ]
机构
[1] Shangrao Normal Univ, Sch Math & Comp Sci, Shangrao 334001, Peoples R China
[2] Southwest Jiaotong Univ, Sch Math, Chengdu 610031, Peoples R China
[3] Fed Univ Para, Fac Math, Raimundo Santana St, BR-68721000 Salinopolis, PA, Brazil
基金
中国国家自然科学基金;
关键词
Stochastic delay p-Laplacian equation; Unbounded thin domain; Random attractors; Upper semicontinuity; REACTION-DIFFUSION EQUATIONS; NAVIER-STOKES EQUATIONS; UPPER SEMI-CONTINUITY; PARABOLIC EQUATIONS; PULLBACK ATTRACTORS; EXISTENCE; BEHAVIOR;
D O I
10.1007/s43037-024-00326-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the long-term behavior of solutions for stochastic delay p-Laplacian equation with multiplicative noise on unbounded thin domains. We first prove the existence and uniqueness of tempered random attractors for these equations defined on(n+1)-dimensional unbounded thin domains. Then, the upper semi continuity of these attractors when a family of(n+1)-dimensional thin domains degenerates onto an n-dimensional domain as the thinness measure approaches zero is established.
引用
收藏
页数:41
相关论文
共 50 条
  • [1] Limiting dynamics for stochastic delay p-Laplacian equation on unbounded thin domains
    Fuzhi Li
    Dingshi Li
    Mirelson M. Freitas
    [J]. Banach Journal of Mathematical Analysis, 2024, 18
  • [2] Dynamics of the non-autonomous stochastic p-Laplacian parabolic problems on unbounded thin domains
    Pu, Zhe
    Li, Dingshi
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (08)
  • [3] The p-Laplacian equation in thin domains: The unfolding approach
    Arrieta, Jose M.
    Carlos Nakasato, Jean
    Correa Pereira, Marcone
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 274 : 1 - 34
  • [4] Equations of p-Laplacian type in unbounded domains
    De Nápoli, PL
    Mariani, MC
    [J]. ADVANCED NONLINEAR STUDIES, 2002, 2 (03) : 237 - 250
  • [5] NONLINEAR P-LAPLACIAN PROBLEMS ON UNBOUNDED-DOMAINS
    YU, LS
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 115 (04) : 1037 - 1045
  • [6] Monotonicity results for the fractional p-Laplacian in unbounded domains
    Wu, Leyun
    Yu, Mei
    Zhang, Binlin
    [J]. BULLETIN OF MATHEMATICAL SCIENCES, 2021, 11 (02)
  • [7] Oscillation of damped PDE with p-Laplacian in unbounded domains
    Xu, Zhiting
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (05) : 2277 - 2289
  • [8] Behavior of the p-Laplacian on Thin Domains
    Silva, Ricardo P.
    [J]. INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 2013
  • [9] Remarks on the p-Laplacian on thin domains
    Pereira, Marcone C.
    Silva, Ricardo P.
    [J]. CONTRIBUTIONS TO NONLINEAR ELLIPTIC EQUATIONS AND SYSTEMS, 2015, 86 : 389 - 403
  • [10] EXISTENCE AND UPPER SEMICONTINUITY OF RANDOM ATTRACTORS FOR STOCHASTIC p-LAPLACIAN EQUATIONS ON UNBOUNDED DOMAINS
    Li, Jia
    Li, Yangrong
    Cui, Hongyong
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,