Gabor fields and wavelet sets for the Heisenberg group

被引:0
|
作者
Bradley Currey
Azita Mayeli
机构
[1] Saint Louis University,Department of Mathematics and Computer Science
[2] Stony Brook University,Mathematics Department
来源
关键词
Wavelet; Heisenberg group; Gabor frame; Parseval frame; Multiplicity free subspace; Primary 42C30; 42C15; Secondary 22E27;
D O I
暂无
中图分类号
学科分类号
摘要
We study singly-generated wavelet systems on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}^2}$$\end{document} that are naturally associated with rank-one wavelet systems on the Heisenberg group N. We prove a necessary condition on the generator in order that any such system be a Parseval frame. Given a suitable subset I of the dual of N, we give an explicit construction for Parseval frame wavelets that are associated with I. We say that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${g\in L^2(I\times \mathbb {R})}$$\end{document} is Gabor field over I if, for a.e. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda \in I}$$\end{document}, |λ|1/2g(λ, ·) is the Gabor generator of a Parseval frame for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^2(\mathbb {R})}$$\end{document}, and that I is a Heisenberg wavelet set if every Gabor field over I is a Parseval frame (mother-)wavelet for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^2(\mathbb {R}^2)}$$\end{document}. We then show that I is a Heisenberg wavelet set if and only if I is both translation congruent with a subset of the unit interval and dilation congruent with the Shannon set.
引用
收藏
页码:119 / 142
页数:23
相关论文
共 50 条
  • [41] LOCAL HARDY SPACES ON HEISENBERG GROUP OVER LOCAL FIELDS
    周广才
    郑维行
    ActaMathematicaScientia, 1996, (02) : 129 - 141
  • [42] Tight Gabor Sets on Discrete Periodic Sets
    Yun-Zhang Li
    Qiao-Fang Lian
    Acta Applicandae Mathematicae, 2009, 107 : 105 - 119
  • [43] Tight Gabor Sets on Discrete Periodic Sets
    Li, Yun-Zhang
    Lian, Qiao-Fang
    ACTA APPLICANDAE MATHEMATICAE, 2009, 107 (1-3) : 105 - 119
  • [44] PERTURBATION OF WAVELET AND GABOR FRAMES
    Ivana Carrizo
    Sergio Favier
    AnalysisinTheoryandApplications, 2003, (03) : 238 - 254
  • [45] Approximations for Gabor and wavelet frames
    Han, DG
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (08) : 3329 - 3342
  • [46] WAVELET AND GABOR TRANSFORMS FOR DETECTION
    CASASENT, DP
    SMOKELIN, JS
    YE, AQ
    OPTICAL ENGINEERING, 1992, 31 (09) : 1893 - 1898
  • [47] On the q-Gabor wavelet
    Tanaka, M
    Watanabe, T
    Mishima, T
    VISION GEOMETRY X, 2001, 4476 : 97 - 108
  • [48] The properties of gabor wavelet transform
    Deng, Cai-Xia
    Fu, Zuo-Xian
    Ma, Xiao-Jian
    2007 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, VOLS 1-4, PROCEEDINGS, 2007, : 1504 - +
  • [49] Irregular wavelet/Gabor frames
    Sun, WC
    Zhou, XW
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2002, 13 (01) : 63 - 76
  • [50] Gabor Frames for Model Sets
    Ewa Matusiak
    Journal of Fourier Analysis and Applications, 2019, 25 : 2570 - 2607