We study singly-generated wavelet systems on \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {R}^2}$$\end{document} that are naturally associated with rank-one wavelet systems on the Heisenberg group N. We prove a necessary condition on the generator in order that any such system be a Parseval frame. Given a suitable subset I of the dual of N, we give an explicit construction for Parseval frame wavelets that are associated with I. We say that \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${g\in L^2(I\times \mathbb {R})}$$\end{document} is Gabor field over I if, for a.e. \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\lambda \in I}$$\end{document}, |λ|1/2g(λ, ·) is the Gabor generator of a Parseval frame for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${L^2(\mathbb {R})}$$\end{document}, and that I is a Heisenberg wavelet set if every Gabor field over I is a Parseval frame (mother-)wavelet for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${L^2(\mathbb {R}^2)}$$\end{document}. We then show that I is a Heisenberg wavelet set if and only if I is both translation congruent with a subset of the unit interval and dilation congruent with the Shannon set.