Gabor fields and wavelet sets for the Heisenberg group

被引:0
|
作者
Bradley Currey
Azita Mayeli
机构
[1] Saint Louis University,Department of Mathematics and Computer Science
[2] Stony Brook University,Mathematics Department
来源
关键词
Wavelet; Heisenberg group; Gabor frame; Parseval frame; Multiplicity free subspace; Primary 42C30; 42C15; Secondary 22E27;
D O I
暂无
中图分类号
学科分类号
摘要
We study singly-generated wavelet systems on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}^2}$$\end{document} that are naturally associated with rank-one wavelet systems on the Heisenberg group N. We prove a necessary condition on the generator in order that any such system be a Parseval frame. Given a suitable subset I of the dual of N, we give an explicit construction for Parseval frame wavelets that are associated with I. We say that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${g\in L^2(I\times \mathbb {R})}$$\end{document} is Gabor field over I if, for a.e. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda \in I}$$\end{document}, |λ|1/2g(λ, ·) is the Gabor generator of a Parseval frame for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^2(\mathbb {R})}$$\end{document}, and that I is a Heisenberg wavelet set if every Gabor field over I is a Parseval frame (mother-)wavelet for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^2(\mathbb {R}^2)}$$\end{document}. We then show that I is a Heisenberg wavelet set if and only if I is both translation congruent with a subset of the unit interval and dilation congruent with the Shannon set.
引用
收藏
页码:119 / 142
页数:23
相关论文
共 50 条
  • [21] Wavelet Transform and Radon Transform on the Quaternion Heisenberg Group
    Jian Xun HE
    He Ping LIU
    ActaMathematicaSinica(EnglishSeries), 2014, 30 (04) : 619 - 636
  • [22] Unramified Heisenberg group extensions of number fields
    Bleher, Frauke M.
    Chinburg, Ted
    Gillibert, Jean
    ISRAEL JOURNAL OF MATHEMATICS, 2022, 247 (01) : 233 - 249
  • [23] Unramified Heisenberg group extensions of number fields
    Frauke M. Bleher
    Ted Chinburg
    Jean Gillibert
    Israel Journal of Mathematics, 2022, 247 : 233 - 249
  • [24] HAUSDORFF DIMENSION OF LIMSUP SETS OF RECTANGLES IN THE HEISENBERG GROUP
    Ekstrom, Fredrik
    Jarvenpaa, Esa
    Jarvenpaa, Maarit
    MATHEMATICA SCANDINAVICA, 2020, 126 (02) : 229 - 255
  • [25] A rough calculus approach to level sets in the Heisenberg group
    Magnani, Valentino
    Stepanov, Eugene
    Trevisan, Dario
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2018, 97 : 495 - 522
  • [26] Banach Gabor frames with Hermite functions: polyanalytic spaces from the Heisenberg group
    Abreu, Luis Daniel
    Groechenig, Karlheinz
    APPLICABLE ANALYSIS, 2012, 91 (11) : 1981 - 1997
  • [27] Mean size formula of wavelet subdivision tree on Heisenberg group
    WANG Guo-mao Department of Mathematics
    Department of Mathematics
    AppliedMathematics:AJournalofChineseUniversities(SeriesB), 2008, (03) : 303 - 312
  • [28] Mean size formula of wavelet subdivision tree on Heisenberg group
    Wang Guo-mao
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2008, 23 (03) : 303 - 312
  • [29] WAVELET SYSTEM AND MUCKENHOUPT A2 CONDITION ON THE HEISENBERG GROUP
    Arati, S.
    Radha, R.
    COLLOQUIUM MATHEMATICUM, 2019, 158 (01) : 59 - 76
  • [30] Mean size formula of wavelet subdivision tree on Heisenberg group
    Guo-mao Wang
    Applied Mathematics-A Journal of Chinese Universities, 2008, 23 : 303 - 312