Gabor fields and wavelet sets for the Heisenberg group

被引:0
|
作者
Bradley Currey
Azita Mayeli
机构
[1] Saint Louis University,Department of Mathematics and Computer Science
[2] Stony Brook University,Mathematics Department
来源
关键词
Wavelet; Heisenberg group; Gabor frame; Parseval frame; Multiplicity free subspace; Primary 42C30; 42C15; Secondary 22E27;
D O I
暂无
中图分类号
学科分类号
摘要
We study singly-generated wavelet systems on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}^2}$$\end{document} that are naturally associated with rank-one wavelet systems on the Heisenberg group N. We prove a necessary condition on the generator in order that any such system be a Parseval frame. Given a suitable subset I of the dual of N, we give an explicit construction for Parseval frame wavelets that are associated with I. We say that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${g\in L^2(I\times \mathbb {R})}$$\end{document} is Gabor field over I if, for a.e. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda \in I}$$\end{document}, |λ|1/2g(λ, ·) is the Gabor generator of a Parseval frame for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^2(\mathbb {R})}$$\end{document}, and that I is a Heisenberg wavelet set if every Gabor field over I is a Parseval frame (mother-)wavelet for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^2(\mathbb {R}^2)}$$\end{document}. We then show that I is a Heisenberg wavelet set if and only if I is both translation congruent with a subset of the unit interval and dilation congruent with the Shannon set.
引用
收藏
页码:119 / 142
页数:23
相关论文
共 50 条
  • [31] Isometries, Geodesics and Jacobi Fields of Lorentzian Heisenberg Group
    Batat, Wafaa
    Rahmani, Salima
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2011, 8 (03) : 411 - 430
  • [32] Isometries, Geodesics and Jacobi Fields of Lorentzian Heisenberg Group
    Wafaa Batat
    Salima Rahmani
    Mediterranean Journal of Mathematics, 2011, 8 : 411 - 430
  • [33] Geodetically convex sets in the Heisenberg group Hn,n ≥ 1
    Prajapat, Jyotshana V.
    Varghese, Anoop
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2024, 15 (01)
  • [34] Nodal sets and horizontal singular sets of H-harmonic functions on the Heisenberg group
    Tian, Long
    Yang, Xiaoping
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2014, 16 (04)
  • [35] An investigation into the potential of Gabor wavelet features for scene classification in wild blueberry fields
    Ayalew, Gashaw
    Zaman, Qamar Uz
    Schumann, Arnold W.
    Percival, David C.
    Chang, Young Ki
    ARTIFICIAL INTELLIGENCE IN AGRICULTURE, 2021, 5 : 72 - 81
  • [36] Generalized q-dimension of measures on Heisenberg self-affine sets in the Heisenberg group
    Miao, Jun Jie
    Wu, Xiaonan
    NONLINEARITY, 2015, 28 (08) : 2939 - 2957
  • [37] HEISENBERG UNCERTAINTY INEQUALITY FOR GABOR TRANSFORM
    Bansal, Ashish
    Kumar, Ajay
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (03): : 737 - 749
  • [38] Duality of Gabor frames and Heisenberg modules
    Jakobsen, Mads
    Luef, Franz
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2020, 14 (04) : 1445 - 1500
  • [39] Local Hardy spaces on Heisenberg group over local fields
    Zhou, GC
    Zheng, WX
    ACTA MATHEMATICA SCIENTIA, 1996, 16 (02) : 129 - 141
  • [40] Horizontal magnetic fields and improved Hardy inequalities in the Heisenberg group
    Cassano, Biagio
    Franceschi, Valentina
    Krejcirik, David
    Prandi, Dario
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2023, 48 (05) : 711 - 752