Note on Rainbow Triangles in Edge-Colored Graphs

被引:0
|
作者
Xiaozheng Chen
Xueliang Li
Bo Ning
机构
[1] Nankai University,Center for Combinatorics and LPMC
[2] Nankai University,College of Computer Science
来源
Graphs and Combinatorics | 2022年 / 38卷
关键词
Edge-coloring; Edge-colored complete graph; Rainbow triangle; Color-degree condition; 05C15; 05C38;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a graph with an edge-coloring c, and let δc(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta ^c(G)$$\end{document} denote the minimum color-degree of G. A subgraph of G is called rainbow if any two edges of the subgraph have distinct colors. In this paper, we consider color-degree conditions for the existence of rainbow triangles in edge-colored graphs. At first, we give a new proof for characterizing all extremal graphs G with δc(G)≥n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta ^c(G)\ge \frac{n}{2}$$\end{document} that do not contain rainbow triangles, a known result due to Li et al. Then, we characterize all complete graphs G without rainbow triangles under the condition δc(G)=log2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta ^c(G)=log_2n$$\end{document}, extending a result due to Li, Fujita and Zhang. Hu, Li and Yang showed that G contains two vertex-disjoint rainbow triangles if δc(G)≥n+22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta ^c(G)\ge \frac{n+2}{2}$$\end{document} when n≥20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 20$$\end{document}. We slightly refine their result by showing that the result also holds for n≥6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 6$$\end{document}, filling the gap of n from 6 to 20. Finally, we prove that if δc(G)≥n+k2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta ^c(G)\ge \frac{n+k}{2}$$\end{document} then every vertex of an edge-colored complete graph G is contained in at least k rainbow triangles, generalizing a result due to Fujita and Magnant. At the end, we mention some open problems.
引用
收藏
相关论文
共 50 条
  • [41] Rainbow vertex-pancyclicity of strongly edge-colored graphs
    Wang, Maoqun
    Qian, Jianguo
    DISCRETE MATHEMATICS, 2021, 344 (01)
  • [42] On the number of rainbow spanning trees in edge-colored complete graphs
    Fu, Hung-Lin
    Lo, Yuan-Hsun
    Perry, K. E.
    Rodger, C. A.
    DISCRETE MATHEMATICS, 2018, 341 (08) : 2343 - 2352
  • [43] Properly colored and rainbow C4's in edge-colored graphs
    Wu, Fangfang
    Broersma, Hajo
    Zhang, Shenggui
    Li, Binlong
    JOURNAL OF GRAPH THEORY, 2024, 105 (01) : 110 - 135
  • [44] Note on edge-colored graphs for networks with homogeneous faults
    Wu, Jigang (asjgwu@gmail.com), 1600, Oxford University Press (59):
  • [45] Rainbow Matchings of Size δ(G) in Properly Edge-Colored Graphs
    Diemunsch, Jennifer
    Ferrara, Michael
    Lo, Allan
    Moffatt, Casey
    Pfender, Florian
    Wenger, Paul S.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (02):
  • [46] Links in edge-colored graphs
    Becu, J. M.
    Dah, M.
    Manoussakis, Y.
    Mendy, G.
    EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (02) : 442 - 460
  • [47] Rainbow Spanning Subgraphs of Small Diameter in Edge-Colored Complete Graphs
    Sogol Jahanbekam
    Douglas B. West
    Graphs and Combinatorics, 2016, 32 : 707 - 712
  • [48] EDGE-COLORED SATURATED GRAPHS
    HANSON, D
    TOFT, B
    JOURNAL OF GRAPH THEORY, 1987, 11 (02) : 191 - 196
  • [49] Rainbow vertex pair-pancyclicity of strongly edge-colored graphs
    Zhao, Peixue
    Huang, Fei
    arXiv, 2022,
  • [50] Rainbow vertex pair-pancyclicity of strongly edge-colored graphs
    Zhao, Peixue
    Huang, Fei
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2023, 25 (01):