Note on Rainbow Triangles in Edge-Colored Graphs

被引:0
|
作者
Xiaozheng Chen
Xueliang Li
Bo Ning
机构
[1] Nankai University,Center for Combinatorics and LPMC
[2] Nankai University,College of Computer Science
来源
Graphs and Combinatorics | 2022年 / 38卷
关键词
Edge-coloring; Edge-colored complete graph; Rainbow triangle; Color-degree condition; 05C15; 05C38;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a graph with an edge-coloring c, and let δc(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta ^c(G)$$\end{document} denote the minimum color-degree of G. A subgraph of G is called rainbow if any two edges of the subgraph have distinct colors. In this paper, we consider color-degree conditions for the existence of rainbow triangles in edge-colored graphs. At first, we give a new proof for characterizing all extremal graphs G with δc(G)≥n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta ^c(G)\ge \frac{n}{2}$$\end{document} that do not contain rainbow triangles, a known result due to Li et al. Then, we characterize all complete graphs G without rainbow triangles under the condition δc(G)=log2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta ^c(G)=log_2n$$\end{document}, extending a result due to Li, Fujita and Zhang. Hu, Li and Yang showed that G contains two vertex-disjoint rainbow triangles if δc(G)≥n+22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta ^c(G)\ge \frac{n+2}{2}$$\end{document} when n≥20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 20$$\end{document}. We slightly refine their result by showing that the result also holds for n≥6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 6$$\end{document}, filling the gap of n from 6 to 20. Finally, we prove that if δc(G)≥n+k2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta ^c(G)\ge \frac{n+k}{2}$$\end{document} then every vertex of an edge-colored complete graph G is contained in at least k rainbow triangles, generalizing a result due to Fujita and Magnant. At the end, we mention some open problems.
引用
收藏
相关论文
共 50 条
  • [21] More on rainbow cliques in edge-colored graphs
    Liu, Xiao-Chuan
    Peng, Danni
    Yang, Xu
    EUROPEAN JOURNAL OF COMBINATORICS, 2025, 124
  • [22] On odd rainbow cycles in edge-colored graphs
    Czygrinow, Andrzej
    Molla, Theodore
    Nagle, Brendan
    Oursler, Roy
    EUROPEAN JOURNAL OF COMBINATORICS, 2021, 94
  • [23] On sufficient conditions for rainbow cycles in edge-colored graphs
    Fujita, Shinya
    Ning, Bo
    Xu, Chuandong
    Zhang, Shenggui
    DISCRETE MATHEMATICS, 2019, 342 (07) : 1956 - 1965
  • [24] Rainbow edge-pancyclicity of strongly edge-colored graphs
    Li, Luyi
    Li, Xueliang
    THEORETICAL COMPUTER SCIENCE, 2022, 907 : 26 - 33
  • [25] Rainbow subgraphs in edge-colored planar and outerplanar graphs
    Czap, Julius
    DISCRETE MATHEMATICS LETTERS, 2023, 12 : 73 - 77
  • [26] Existence of rainbow matchings in properly edge-colored graphs
    Wang, Guanghui
    Zhang, Jianghua
    Liu, Guizhen
    FRONTIERS OF MATHEMATICS IN CHINA, 2012, 7 (03) : 543 - 550
  • [27] Rainbow Hamiltonian cycles in strongly edge-colored graphs
    Cheng, Yangyang
    Sun, Qiang
    Tan, Ta Sheng
    Wang, Guanghui
    DISCRETE MATHEMATICS, 2019, 342 (04) : 1186 - 1190
  • [28] 2-COLORED TRIANGLES IN EDGE-COLORED COMPLETE GRAPHS .2.
    BUSOLINI, DT
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1981, 30 (03) : 360 - 363
  • [29] Rainbow and Properly Colored Spanning Trees in Edge-Colored Bipartite Graphs
    Mikio Kano
    Masao Tsugaki
    Graphs and Combinatorics, 2021, 37 : 1913 - 1921
  • [30] Properly Edge-colored Theta Graphs in Edge-colored Complete Graphs
    Li, Ruonan
    Broersma, Hajo
    Zhang, Shenggui
    GRAPHS AND COMBINATORICS, 2019, 35 (01) : 261 - 286