Note on Rainbow Triangles in Edge-Colored Graphs

被引:0
|
作者
Xiaozheng Chen
Xueliang Li
Bo Ning
机构
[1] Nankai University,Center for Combinatorics and LPMC
[2] Nankai University,College of Computer Science
来源
Graphs and Combinatorics | 2022年 / 38卷
关键词
Edge-coloring; Edge-colored complete graph; Rainbow triangle; Color-degree condition; 05C15; 05C38;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a graph with an edge-coloring c, and let δc(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta ^c(G)$$\end{document} denote the minimum color-degree of G. A subgraph of G is called rainbow if any two edges of the subgraph have distinct colors. In this paper, we consider color-degree conditions for the existence of rainbow triangles in edge-colored graphs. At first, we give a new proof for characterizing all extremal graphs G with δc(G)≥n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta ^c(G)\ge \frac{n}{2}$$\end{document} that do not contain rainbow triangles, a known result due to Li et al. Then, we characterize all complete graphs G without rainbow triangles under the condition δc(G)=log2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta ^c(G)=log_2n$$\end{document}, extending a result due to Li, Fujita and Zhang. Hu, Li and Yang showed that G contains two vertex-disjoint rainbow triangles if δc(G)≥n+22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta ^c(G)\ge \frac{n+2}{2}$$\end{document} when n≥20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 20$$\end{document}. We slightly refine their result by showing that the result also holds for n≥6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 6$$\end{document}, filling the gap of n from 6 to 20. Finally, we prove that if δc(G)≥n+k2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta ^c(G)\ge \frac{n+k}{2}$$\end{document} then every vertex of an edge-colored complete graph G is contained in at least k rainbow triangles, generalizing a result due to Fujita and Magnant. At the end, we mention some open problems.
引用
收藏
相关论文
共 50 条
  • [31] Rainbow matchings in edge-colored complete split graphs
    Jin, Zemin
    Ye, Kecai
    Sun, Yuefang
    Chen, He
    EUROPEAN JOURNAL OF COMBINATORICS, 2018, 70 : 297 - 316
  • [32] Existence of rainbow matchings in properly edge-colored graphs
    Guanghui Wang
    Jianghua Zhang
    Guizhen Liu
    Frontiers of Mathematics in China, 2012, 7 : 543 - 550
  • [33] Existence of rainbow matchings in strongly edge-colored graphs
    Wang, Guanghui
    Yan, Guiying
    Yu, Xiaowei
    DISCRETE MATHEMATICS, 2016, 339 (10) : 2457 - 2460
  • [34] Rainbow Pancyclicity and Panconnectivity of Strongly Edge-Colored Graphs
    Wang, Yi
    Zhao, Peixue
    Huang, Fei
    GRAPHS AND COMBINATORICS, 2025, 41 (01)
  • [35] Properly Edge-colored Theta Graphs in Edge-colored Complete Graphs
    Ruonan Li
    Hajo Broersma
    Shenggui Zhang
    Graphs and Combinatorics, 2019, 35 : 261 - 286
  • [36] Rainbow and Properly Colored Spanning Trees in Edge-Colored Bipartite Graphs
    Kano, Mikio
    Tsugaki, Masao
    GRAPHS AND COMBINATORICS, 2021, 37 (05) : 1913 - 1921
  • [37] Note on Edge-Colored Graphs for Networks with Homogeneous Faults
    Hou, Rui
    Wu, Jigang
    Chen, Yawen
    Zhang, Haibo
    COMPUTER JOURNAL, 2016, 59 (10): : 1470 - 1478
  • [38] A note on the simplicity of C*-algebras of edge-colored graphs
    Larki, Hossein
    Riazi, Abdolhamid
    Pourabbas, Abdolrasoul
    KUWAIT JOURNAL OF SCIENCE, 2014, 41 (01) : 145 - 153
  • [39] Note on edge-colored graphs and digraphs without properly colored cycles
    Gutin, Gregory
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2008, 42 : 137 - 140
  • [40] Vertex-disjoint rainbow cycles in edge-colored graphs
    Li, Luyi
    Li, Xueliang
    DISCRETE MATHEMATICS, 2022, 345 (07)