Note on Rainbow Triangles in Edge-Colored Graphs

被引:0
|
作者
Xiaozheng Chen
Xueliang Li
Bo Ning
机构
[1] Nankai University,Center for Combinatorics and LPMC
[2] Nankai University,College of Computer Science
来源
Graphs and Combinatorics | 2022年 / 38卷
关键词
Edge-coloring; Edge-colored complete graph; Rainbow triangle; Color-degree condition; 05C15; 05C38;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a graph with an edge-coloring c, and let δc(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta ^c(G)$$\end{document} denote the minimum color-degree of G. A subgraph of G is called rainbow if any two edges of the subgraph have distinct colors. In this paper, we consider color-degree conditions for the existence of rainbow triangles in edge-colored graphs. At first, we give a new proof for characterizing all extremal graphs G with δc(G)≥n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta ^c(G)\ge \frac{n}{2}$$\end{document} that do not contain rainbow triangles, a known result due to Li et al. Then, we characterize all complete graphs G without rainbow triangles under the condition δc(G)=log2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta ^c(G)=log_2n$$\end{document}, extending a result due to Li, Fujita and Zhang. Hu, Li and Yang showed that G contains two vertex-disjoint rainbow triangles if δc(G)≥n+22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta ^c(G)\ge \frac{n+2}{2}$$\end{document} when n≥20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 20$$\end{document}. We slightly refine their result by showing that the result also holds for n≥6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 6$$\end{document}, filling the gap of n from 6 to 20. Finally, we prove that if δc(G)≥n+k2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta ^c(G)\ge \frac{n+k}{2}$$\end{document} then every vertex of an edge-colored complete graph G is contained in at least k rainbow triangles, generalizing a result due to Fujita and Magnant. At the end, we mention some open problems.
引用
收藏
相关论文
共 50 条
  • [1] Note on Rainbow Triangles in Edge-Colored Graphs
    Chen, Xiaozheng
    Li, Xueliang
    Ning, Bo
    GRAPHS AND COMBINATORICS, 2022, 38 (03)
  • [2] Rainbow triangles in edge-colored graphs
    Li, Binlong
    Ning, Bo
    Xu, Chuandong
    Zhang, Shenggui
    EUROPEAN JOURNAL OF COMBINATORICS, 2014, 36 : 453 - 459
  • [3] Rainbow triangles in edge-colored Kneser graphs
    Jin, Zemin
    Wang, Fang
    Wang, Huaping
    Lv, Bihong
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 365
  • [4] Counting rainbow triangles in edge-colored graphs
    Li, Xueliang
    Ning, Bo
    Shi, Yongtang
    Zhang, Shenggui
    JOURNAL OF GRAPH THEORY, 2024, 107 (04) : 742 - 758
  • [5] Rainbow triangles and cliques in edge-colored graphs
    Ehard, Stefan
    Mohr, Elena
    EUROPEAN JOURNAL OF COMBINATORICS, 2020, 84
  • [6] Edge-disjoint rainbow triangles in edge-colored graphs
    Li, Luyi
    Li, Xueliang
    DISCRETE APPLIED MATHEMATICS, 2022, 318 : 21 - 30
  • [7] Note on rainbow cycles in edge-colored graphs
    Chen, Xiaozheng
    Li, Xueliang
    DISCRETE MATHEMATICS, 2022, 345 (12)
  • [8] Vertex-disjoint rainbow triangles in edge-colored graphs
    Hu, Jie
    Li, Hao
    Yang, Donglei
    DISCRETE MATHEMATICS, 2020, 343 (12)
  • [9] A note on rainbow matchings in strongly edge-colored graphs
    Cheng, Yangyang
    Tan, Ta Sheng
    Wang, Guanghui
    DISCRETE MATHEMATICS, 2018, 341 (10) : 2762 - 2767
  • [10] Color Degree Sum Conditions for Rainbow Triangles in Edge-Colored Graphs
    Li, Ruonan
    Ning, Bo
    Zhang, Shenggui
    GRAPHS AND COMBINATORICS, 2016, 32 (05) : 2001 - 2008