A universal inequality for CFT and quantum gravity

被引:0
|
作者
Simeon Hellerman
机构
[1] The University of Tokyo,Institute for the Physics and Mathematics of the Universe
关键词
Models of Quantum Gravity; Conformal and W Symmetry; Conformal Field Models in String Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that every unitary two-dimensional conformal field theory (with no extended chiral algebra, and with c, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \tilde{c} > 1 $\end{document}) contains a primary operator with dimension ∆1 that satisfies \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ 0 < {\Delta_1} < \frac{{c + \tilde{c}}}{{12}} + 0.473695 $\end{document}. Translated into gravitational language using the AdS3/CFT2 dictionary, our result proves rigorously that the lightest massive excitation in any theory of 3D matter and gravity with cosmological constant Λ < 0 can be no heavier than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{1} \left/ {{\left( {4{G_N}} \right)}} \right.} + o\left( {\sqrt {{ - \Lambda }} } \right) $\end{document}. In the flat-space approximation, this limiting mass is twice that of the lightest BTZ black hole. The derivation applies at finite central charge for the boundary CFT, and does not rely on an asymptotic expansion at large central charge. Neither does our proof rely on any special property of the CFT such as supersymmetry or holomorphic factorization, nor on any bulk interpretation in terms of string theory or semiclassical gravity. Our only assumptions are unitarity and modular invariance of the dual CFT. Our proof demonstrates for the first time that there exists a universal center-of-mass energy beyond which a theory of ”pure” quantum gravity can never consistently be extended.
引用
收藏
相关论文
共 50 条
  • [41] Universal asymptotics for high energy CFT data
    Benjamin, Nathan
    Lee, Jaeha
    Ooguri, Hirosi
    Simmons-Duffin, David
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, 2024 (03)
  • [42] Non-rational 2D quantum gravity II. Target space CFT
    Kostov, I. K.
    Petkova, V. B.
    NUCLEAR PHYSICS B, 2007, 769 (03) : 175 - 216
  • [43] Topologically massive gravity and the AdS/CFT correspondence
    Skenderis, Kostas
    Taylor, Marika
    van Rees, Bait C.
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (09):
  • [44] Non-rational 2D quantum gravity: I. World sheet CFT
    Kostov, I. K.
    Petkova, V. B.
    NUCLEAR PHYSICS B, 2007, 770 (03) : 273 - 331
  • [45] AdS3 gravity and random CFT
    Jordan Cotler
    Kristan Jensen
    Journal of High Energy Physics, 2021
  • [46] On the correspondence between gravity fields and CFT operators
    Arutyunov, G
    Frolov, S
    JOURNAL OF HIGH ENERGY PHYSICS, 2000, (04):
  • [47] AdS3 gravity and random CFT
    Cotler, Jordan
    Jensen, Kristan
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (04)
  • [48] Conformal gravity from the AdS/CFT mechanism
    Aros, Rodrigo
    Romo, Mauricio
    Zamorano, Nelson
    PHYSICAL REVIEW D, 2007, 75 (06):
  • [49] Weak gravity conjecture in the AdS/CFT correspondence
    Nakayama, Yu
    Nomura, Yasunori
    PHYSICAL REVIEW D, 2015, 92 (12):
  • [50] Constraining gravity using entanglement in AdS/CFT
    Banerjee, Shamik
    Bhattacharyya, Arpan
    Kaviraj, Apratim
    Sen, Kallol
    Sinha, Aninda
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (05):